1

Manual for Version 3.1.10

\begin { }
\coordinate (front) at (0,0);
\coordinate (horizon) at (0, .31\paperheight);
\coordinate (bottom) at (0,-.6\paperheight);
\coordinate (sky) at (0, .57\paperheight);
\coordinate (left) at (-.51\paperwidth,0);
\coordinate (right) at (.51\paperwidth,0);
\ [bottom color=white,
top color=blue!30!black!50]
([yshift=-5mm]horizon —| left)

rectangle (sky -| right);

\ [bottom color=black!70!green!25,
top color=black!70!green!10]
(front -| left) —- (horizon -| left)
decorate [decoration=random steps] {
—- (horizon -| right) }
—— (front -| right) -- cycle;

\ [top color=black!70!green!25,
bottom color=black!25]
([yshift=-5mm-1pt]front -| left)
rectangle ([yshift=I1pt]front -| right);

\ [black!25]
(bottom —-| left)
rectangle ([yshift=-5mm]front -| right);

\def\nodeshadowed [#1]#2; {
\ [scale=2, above, #1] {
\global\setbox\mybox=\hbox{#2}
\copy \mybox} ;
\ [scale=2, above, #1, yscale=-1,
scope fading=south,opacity=0.4] {\box\mybox};

\nodeshadowed [at={ (-5,8)},yslant=0.05]
{\Huge Ti\textcolor{orange}{\emph{k}}Z};
\nodeshadowed [at={(0,8.3)}]
{\huge \textcolor{green!50!black!50}{\&}};
\nodeshadowed [at={(5,8)},yslant=-0.05]
{\Huge \textsc{PGF}};
\nodeshadowed [at={(0,5)}]

{Manual for Version \pgftypesetversion};

\foreach \where in {-9cm, 9cm} {
\nodeshadowed [at={ (\where,5cm)}] { \tikz
\ [green!20!black, rotate=90,

l-system={rule set={F -> FF-[-F+F]+[+F-F]},
axiom=F, order=4, step=2pt,
randomize step percent=50, angle=30,

randomize angle percent=5}] l-system; }}
\foreach \i in {0.5,0.6,...,2}
\
[white, opacity=\i/2,
decoration=Koch snowflake,
shift= (horizon),shift={ (rand+11,rndx7) },
scale=\i,double copy shadow={
opacity=0.2, shadow xshift=0pt,
shadow yshift=3x\i pt, =white, =none}]
decorate {
decorate {
decorate {
(0,0)- ++(60:1) -— ++(-60:1) -- cycle
}oyobs
\ (left text)
\ (right text)
\ [decorate, decoration={footprints, foot of=gnome},
opacity=.5,brown] (randx8, ~-rnd+10)

to [out=randx180,in=randx180] (randx8,-rndx10);

\end{ }

Fiir meinen Vater, damit er noch viele schone TEX-Graphiken erschaffen kann.

Till

Copyright 2007 to 2013 by Till Tantau

Permission is granted to copy, distribute and/or modify the documentation under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled GNU Free Documentation License.

Permission is granted to copy, distribute and/or modify the code of the package under the terms of the GNU
Public License, Version 2 or any later version published by the Free Software Foundation. A copy of the
license is included in the section entitled GNU Public License.

Permission is also granted to distribute and/or modify both the documentation and the code under the
conditions of the LaTeX Project Public License, either version 1.3 of this license or (at your option) any
later version. A copy of the license is included in the section entitled IWTEX Project Public License.

The TikZ and PGF Packages

Manual for version 3.1.10
https://github.com/pgf-tikz/pgf

Till Tantau™*

Institut fiir Theoretische Informatik
Universitat zu Libeck

January 15, 2023

Contents

1 Introduction
1.1 The Layers Below TikZ o
1.2 Comparison with Other Graphics Packages
1.3 Utility Packages
14 How to Read This Manual
1.5 Authors and Acknowledgements L Lo
1.6 Getting Help o o o o e

I Tutorials and Guidelines

2 Tutorial: A Picture for Karl’s Students

2.1 Problem Statement
2.2 Setting up the Environment L

221 Setting up the Environment in BTEX

2.2.2 Setting up the Environment in Plain TEX

223 Setting up the Environment in ConTEXt
2.3 Straight Path Construction oo
2.4 Curved Path Construction
2.5 Circle Path Construction
2.6 Rectangle Path Construction
2.7 Grid Path Construction
2.8 Adding a Touch of Style
2.9 Drawing Options L
2.10 Arc Path Construction e
2.11 Clipping a Path e
2.12 Parabola and Sine Path Construction
2.13 Filling and Drawing e
214 Shading e
2.15 Specifying Coordinates L e
2.16 Intersecting Paths
217 Adding Arrow Tips
218 Scoping e
2.19 Transformations L L e
2.20 Repeating Things: For-Loops L e
221 Adding Text e
2.22 Pics: The Angle Revisited

27
27
28
28
29
29
29

30

31
31
31
31
32
32
33
33
34
34
35
35
36
36
37
38
38
39
40
41
41
42
43
43
45
48

*Editor of this documentation. Parts of this documentation have been written by other authors as indicated in these parts

or chapters and in Section 1.5.

https://github.com/pgf-tikz/pgf

3 Tutorial: A Petri-Net for Hagen 50

3.1 Problem Statement 50
3.2 Setting up the Environment L o 50
3.2.1 Setting up the Environment in BTEX 50

3.2.2 Setting up the Environment in Plain TEX 50

3.2.3 Setting up the Environment in ConTEXt o1

3.3 Introduction to Nodes L L 51
3.4 Placing Nodes Using the At Syntax 52
3.5 Using Styles o o L e 52
3.6 Node Size 53
3.7 Naming Nodes 53
3.8 Placing Nodes Using Relative Placement 54
3.9 Adding Labels Next to Nodes i 54
3.10 Connecting Nodes o e 56
3.11 Adding Labels Next to Lines 58
3.12 Adding the Snaked Line and Multi-Line Text 58
3.13 Using Layers: The Background Rectangles 59
3.14 The Complete Code e 60
4 Tutorial: Euclid’s Amber Version of the Elements 62
4.1 Book I, Proposition I oo 62
4.1.1 Setting up the Environment L Lo 62

4.1.2 The Line AB e 63

4.1.3 The Circle Around A 63

4.1.4 The Intersection of the Circles. 65

4.1.5 The Complete Code 66

4.2 Book I, Proposition IT. o 67
4.2.1 Using Partway Calculations for the Constructionof D 67

4.2.2 Intersecting a Lineand a Circle 68

4.2.3 The Complete Code 69

5 Tutorial: Diagrams as Simple Graphs 70
5.1 Styling the Nodes e 70
5.2 Aligning the Nodes Using Positioning Options 72
5.3 Aligning the Nodes Using Matrices 74
5.4 The Diagram as a Graph L 75
5.4.1 Connecting Already Positioned Nodes 75

5.4.2 Creating Nodes Using the Graph Command 76

6 Tutorial: A Lecture Map for Johannes 80
6.1 Problem Statement 80
6.2 Introduction to Trees L 80
6.3 Creating the Lecture Map e 83
6.4 Adding the Lecture Annotations Lo 87
6.5 Adding the Background oL o 88
6.6 Adding the Calendar 89
6.7 The Complete Code e 91
7 Guidelines on Graphics 95
7.1 Planning the Time Needed for the Creation of Graphics. 95
7.2 Workflow for Creating a Graphic 95
7.3 Linking Graphics With the Main Text 96
7.4 Consistency Between Graphics and Text 96
7.5 Labels in Graphics o e 97
7.6 Plots and Charts 97
7.7 Attention and Distraction L 100
II Installation and Configuration 102

8 Installation

8.1 Package and Driver Versions L L
8.2 Installing Prebundled Packages L.
8.2.1 Debian e
8.2.2 MiKTeX o e
8.3 Installation in a texmf Tree Lo
8.3.1 Installation that Keeps Everything Together
8.3.2 Installation that is TDS-Compliant
8.4 Updating the Installation L L
9 Licenses and Copyright
9.1 Which License Applies? o o e
9.2 The GNU Public License, Version 2
9.2.1 Preamble
9.2.2 Terms and Conditions For Copying, Distribution and Modification
9.2.3 No Warranty e
9.3 The IATEX Project Public License, Version 1.3c 2006-05-20
9.3.1 Preamble e
9.3.2 Definitions
9.3.3 Conditions on Distribution and Modification.
9.3.4 No Warranty e
9.3.5 Maintenance of The Work L .
9.3.6 Whether and How to Distribute Works under This License
9.3.7 Choosing This License or Another License
9.3.8 A Recommendation on Modification Without Distribution
9.3.9 How to Use This License
9.3.10 Derived Works That Are Not Replacements
9.3.11 Important Recommendations
9.4 GNU Free Documentation License, Version 1.2, November 2002
9.4.1 Preamble
9.4.2 Applicability and definitions Lo
9.4.3 Verbatim Copying o e
9.4.4 Copying in Quantity
9.4.5 Modifications e e e
9.4.6 Combining Documents L
9.4.7 Collection of Documents L
9.4.8 Aggregating with independent Works oL
9.4.9 Translation L
9.4.10 Termination
9.4.11 Future Revisions of this License,
9.4.12 Addendum: How to use this License for your documents

10 Supported Formats

10.1 Supported Input Formats: BTEX, Plain TEX, ConTeXt
10.1.1 Using the IWTEX Format
10.1.2 Using the Plain TEX Format
10.1.3 Using the ConTEXt Format
10.2 Supported Output Formats
10.2.1 Selecting the Backend Driver
10.2.2 Producing PDF Output o
10.2.3 Producing PostScript Output o o
10.2.4 Producing SVG Output

10.2.5 Producing Perfectly Portable DVI Output

III TikZ ist kein Zeichenprogramm

103
103
103
103
104
104
104
104
104

105
105
105
105
106
108
108
108
108
109
110
111
111
111
112
112
112
112
113
113
113
114
114
114
116
116
116
116
116
117
117

118
118
118
118
118
119
119
119
120
121
122

123

11

12

13

14

Design Principles

11.1 Special Syntax For Specifying Points
11.2 Special Syntax For Path Specifications
11.3 Actions on Paths L
11.4 Key—Value Syntax for Graphic Parameters
11.5 Special Syntax for Specifying Nodes L L.
11.6 Special Syntax for Specifying Trees
11.7 Special Syntax for Graphs
11.8 Grouping of Graphic Parameters
11.9 Coordinate Transformation System

Hierarchical Structures: Package, Environments, Scopes, and Styles

12.1 Loading the Package and the Libraries

12.2 Creating a Picture L e
12.2.1 Creating a Picture Using an Environment
12.2.2 Creating a Picture Using a Command
12.2.3 Handling Catcodes and the Babel Package
12.2.4 Adding a Background L oL oL

12.3 Using Scopes to Structure a Picture L o oL
12.3.1 The Scope Environment L
12.3.2 Shorthand for Scope Environments,
12.3.3 Single Command Scopes e
12.3.4 Using Scopes Inside Paths oo L.

12.4 Using Graphic Options
12.4.1 How Graphic Options Are Processed
12.4.2 Using Styles to Manage How Pictures Look

Specifying Coordinates

131 Overview L e e e

13.2 Coordinate Systemso e
13.2.1 Canvas, XYZ, and Polar Coordinate Systems
13.2.2 Barycentric Systems
13.2.3 Node Coordinate System L o
13.2.4 Tangent Coordinate Systems
13.2.5 Defining New Coordinate Systems

13.3 Coordinates at Intersections L
13.3.1 Intersections of Perpendicular Lines
13.3.2 Intersections of Arbitrary Paths 0.

13.4 Relative and Incremental Coordinates L L.
13.4.1 Specifying Relative Coordinates
13.4.2 Rotational Relative Coordinates
13.4.3 Relative Coordinates and Scopes

13.5 Coordinate Calculations
13.5.1 The General Syntax e
13.5.2 The Syntax of Factors
13.5.3 The Syntax of Partway Modifiers
13.5.4 The Syntax of Distance Modifiers
13.5.5 The Syntax of Projection Modifiers

Syntax for Path Specifications
14.1 The Move-To Operation it e e
14.2 The Line-To Operation et e
14.2.1 Straight Lines e
14.2.2 Horizontal and Vertical Lines
14.3 The Curve-To Operation e
14.4 The Rectangle Operation e
14.5 Rounding COrners o it e e e e
14.6 The Circle and Ellipse Operations
14.7 The Arc Operation e e

124
124
124
125
125
125
125
126
126
127

128
128
128
128
130
130
131
131
131
132
132
133
133
133
133

136
136
136
136
139
140
142
143
143
144
144
146
146
147
148
148
149
149
150
151
151

15

16

14.8 The Grid Operation e 160
14.9 The Parabola Operation 162
14.10 The Sine and Cosine Operation o 163
14.11 The SVG Operation e 164
14.12 The Plot Operation 164
14.13 The To Path Operation 164
14.14 The Foreach Operation i 167
14.15 The Let Operation e 168
14.16 The Scoping Operation e 169
14.17 The Node and Edge Operations 169
14.18 The Graph Operation L 170
14.19 The Pic Operation o o e 170
14.20 The Attribute Animation Operation 170
14.21 The PGF-Extra Operation 170
14.22 Interacting with the Soft Path subsystem 171
Actions on Paths 172
15.1 OVerview e 172
15.2 Specifying a Color e 173
153 Drawinga Path o 173
15.3.1 Graphic Parameters: Line Width, Line Cap, and Line Join 174
15.3.2 Graphic Parameters: Dash Pattern, .. 175
15.3.3 Graphic Parameters: Draw Opacity 177
15.3.4 Graphic Parameters: Double Lines and Bordered Lines 178
154 Adding Arrow Tipstoa Path 179
15,5 Fillinga Path 179
15.5.1 Graphic Parameters: Fill Pattern 180
15.5.2 Graphic Parameters: Interior Rules 181
15.5.3 Graphic Parameters: Fill Opacity 181
15.6 Generalized Filling: Using Arbitrary Pictures to Filla Path 181
15.7 Shadinga Path 183
15.8 Establishing a Bounding Box Lo oo 184
15.9 Clipping and Fading (Soft Clipping) v v i 186
15.10 Doing Multiple Actionsona Path, 187
15.11 Decorating and Morphinga Path o oo 189
Arrows 190
16.1 Overview 190
16.2 Where and When Arrow Tips Are Placed 190
16.3 Arrow Keys: Configuring the Appearance of a Single Arrow Tip 192
16.3.1 Size 193
16.3.2 Scaling e 196
16.3.3 Arc Angles 196
16.3.4 Slanting L e 197
16.3.5 Reversing, Halving, Swapping 197
16.3.6 Coloring e 198
16.3.7 Line Styling e 200
16.3.8 Bending and Flexing Lo 201
16.4 Arrow Tip Specifications 206
16.4.1 Syntax oL e e 206
16.4.2 Specifying Paddings oL 207
16.4.3 Specifying the Line End o oo 208
16.4.4 Defining Shorthands L 208
16.4.5 Scoping of Arrow Keys Lo 210
16.5 Reference: Arrow Tips e 211
16.5.1 Barbed Arrow Tips 213
16.5.2 Mathematical Barbed Arrow Tips. 215
16.5.3 Geometric Arrow Tips 217
16.5.4 Caps . .« o o e 220

17

18

19

16.5.5 Special Arrow Tips

Nodes and Edges

17.1
17.2

17.3
17.4

17.5

17.6
17.7
17.8
17.9
17.10

17.11

17.12

17.13

17.14

Pics:

18.1
18.2

18.3

19.1
19.2

19.3

Overview
Nodes and Their Shapes
17.2.1 Syntax of the Node Command
17.2.2 Predefined Shapes
17.2.3 Common Options: Separations, Margins, Padding and Border Rotation

Multi-Part Nodes

The Node Text o o e
17.4.1 Text Parameters: Color and Opacity
17.4.2 Text Parameters: Font L o
17.4.3 Text Parameters: Alignment and Width for Multi-Line Text
17.4.4 Text Parameters: Height and Depth of Text
Positioning Nodes e
17.5.1 Positioning Nodes Using Anchors
17.5.2 Basic Placement Options.
17.5.3 Advanced Placement Options
17.5.4 Advanced Arrangements of Nodes
Fitting Nodes to a Set of Coordinates
Transformations L
Placing Nodes on a Line or Curve Explicitly
Placing Nodes on a Line or Curve Implicitly
The Label and Pin Options
17.10.1 Overview oL e
17.10.2 The Label Option
17.10.3 The Pin Option e
17.10.4 The Quotes Syntax L e
Connecting Nodes: Using Nodes as Coordinates
Connecting Nodes: Using the Edge Operation
17.12.1 Basic Syntax of the Edge Operation
17.12.2 Nodes on Edges: Quotes Syntax
Referencing Nodes Outside the Current Picture
17.13.1 Referencing a Node in a Different Picture
17.13.2 Referencing the Current Page Node — Absolute Positioning
Late Code and Late Options
Small Pictures on Paths
Overview e
The Pic Syntaxo
18.2.1 The Quotes Syntax e
Defining New Pic Types e
Specifying Graphs
OVerview L e
Concepts oo e
19.2.1 Concept: Node Chains i
19.2.2 Concept: Chain Groups it ittt
19.2.3 Concept: Edge Labels and Styles,
19.2.4 Concept: Node Sets o e
19.2.5 Concept: Graph Macros i e
19.2.6 Concept: Graph Expressions and Color Classes
Syntax of the Graph Path Command
19.3.1 The Graph Command
19.3.2 Syntax of Group Specificationso
19.3.3 Syntax of Chain Specifications L.
19.3.4 Syntax of Node Specifications 0.
19.3.5 Specifying Tries e
Quick Graphs L

19.4

20

21

22

19.5 Simple Versus Multi-Graphs
19.6 Graph Edges: Labeling and Styling
19.6.1 Options For All Edges Between Two Groups
19.6.2 Changing Options For Certain Edges
19.6.3 Options For Incoming and Outgoing Edges
19.6.4 Special Syntax for Options For Incoming and Outgoing Edges
19.6.5 Placing Node Texts on Incoming Edges
19.7 Graph Operators, Color Classes, and Graph Expressions
19.7.1 Color Classes o v i i i e e
19.7.2 Graph Operators on Groups of Nodes
19.7.3 Graph Operators for Joining Groups
19.8 Graph Macros
19.9 Online Placement Strategies L
19.9.1 Manual Placement L
19.9.2 Placement ona Grid
19.9.3 Placement Taking Node Sizes Into Account
19.9.4 Placement On a Circle
19.9.5 Levels and Level Styles
19.9.6 Defining New Online Placement Strategies
19.10 Reference: Predefined Elements L.
19.10.1 Graph Macros
19.10.2 Group Operators e
19.10.3 Joining Operators. e
Matrices and Alignment
20.1 OVerview e e e e
20.2 Matrices are Nodes L e
20.3 Cell Pictures e e
20.3.1 Alignment of Cell Pictures
20.3.2 Setting and Adjusting Column and Row Spacing
20.3.3 Cell Styles and Options L
20.4 Anchoring a Matrix L
20.5 Considerations Concerning Active Characters
20.6 Exampleso L e
Making Trees Grow
21.1 Introduction to the Child Operation
21.2 Child Paths and Child Nodes
21.3 Naming Child Nodes e
21.4 Specifying Options for Trees and Children
21.5 Placing Child Nodes e
21.5.1 Basicldea e
21.5.2 Default Growth Function
21.5.3 Missing Children
21.5.4 Custom Growth Functions
21.6 Edges From the Parent Node
Plots of Functions
221 OVErVIEW o e e e
22.2 The Plot Path Operation
22.3 Plotting Points Given Inline
22.4 Plotting Points Read From an External File
22.5 Plotting a Function e
22.6 Plotting a Function Using Gnuplot
22.7 Placing Marks on the Plot
22.8 Smooth Plots, Sharp Plots, Jump Plots, Comb Plots and Bar Plots

23

24

25

26

Transparency

231 OVerview e
23.2 Specifying a Uniform Opacity
23.3 Blend Modes e
234 Fadings e
23.4.1 Creating Fadings
23.42 FadingaPath
23.4.3 Fading a Scope
23.5 Transparency Groups v v ottt e e e
Decorated Paths
24.1 OVErVIEW o e e
24.2 Decorating a Subpath Using the Decorate Path Command
24.3 Decorating a Complete Path oo
24.4 Adjusting Decorations. e
24.4.1 Positioning Decorations Relative to the To-Be-Decorate Path
24.4.2 Starting and Ending Decorations Early or Late
Transformations
25.1 The Different Coordinate Systems o
25.2 The XY- and XYZ-Coordinate Systems
25.3 Coordinate Transformations
25.4 Canvas Transformations L
Animations
26.1 Introduction L
26.1.1 Animations Change Attributes
26.1.2 Limitations of the Animation System
26.1.3 Concepts: (Graphic) Objects
26.1.4 Concepts: Attributes
26.1.5 Concepts: Timelines
26.2 Creating an Animation e
26.2.1 The Animate Key
26.2.2 Timeline Entries oo
26.2.3 Specifying Objects
26.2.4 Specifying Attributes
26.2.5 Specifying IDso
26.2.6 Specifying Times
26.2.7 Values e
26.2.8 SCOPES « v v v e e
26.3 Syntactic Simplificationso oL
26.3.1 The Colon Syntax I: Specifying Objects and Attributes.
26.3.2 The Colon Syntax II: Animating Myself
26.3.3 The Time Syntax: Specifying Times
26.3.4 The Quote Syntax: Specifying Values
26.3.5 Timesheets e
26.4 The Attributes That Can Be Animated
26.4.1 Animating Color, Opacity, and Visibility
26.4.2 Animating Paths and their Rendering
26.4.3 Animating Transformations: Relative Transformations
26.4.4 Animating Transformations: Positioning
26.4.5 Animating Transformations: Views
26.5 Controlling the Timeline
26.5.1 Before and After the Timeline: Value Filling.
26.5.2 Beginning and Ending Timelines
26.5.3 Repeating Timelines and Accumulation
26.5.4 Smoothing and Jumping Timelines
26.6 Snapshots L

10

353
353
353
355
358
358
360
362
363

365
365
367
369
370
370
371

373
373
373
374
378

IV Graph Drawing

27

28

29

30

31

Introduction to Algorithmic Graph Drawing

27.1 What Is Algorithmic Graph Drawing?
27.2 Using the Graph Drawing System
27.3 Extending the Graph Drawing System
27.4 The Layers of the Graph Drawing System
27.5 Organisation of the Graph Drawing Documentation
27.6 Acknowledgements
Using Graph Drawing in TikZ
28.1 Choosing a Layout and a Library
28.2 Graph Drawing Parameters.
28.3 Padding and Node Distances
28.4 Anchoring a Graph oL
28.5 Orientinga Graph
28.6 Fine-Tuning Positions of Nodes
28.7 Packing of Connected Components
28.7.1 Ordering the Components
28.7.2 Arranging Components in a Certain Direction
28.7.3 Aligning Components
28.7.4 The Distance Between Components
28.8 Anchoring Edges. oo
28.9 Hyperedges.
28.10 Using Several Different Layouts to Draw a Single Graph
28.10.1 Sublayouts.
28.10.2 Subgraph Nodes
28.10.3 Overlapping Sublayouts
28.11 Miscellaneous Options
Using Graph Drawing in PGF
29.1 Overview
29.2 How Graph Drawing in PGF Works
29.2.1 Graph Drawing Scopes
29.3 Layout Scopes
29.4 Layout Keys
29.5 Parameters oL
206 Events
29.7 Subgraph Nodes
Graph Drawing Layouts: Trees
30.1 The Tree Layouts
30.1.1 The Reingold-Tilford Layout
30.2 Specifying Missing Children
30.3 Spanning Tree Computation
Graph Drawing Algorithms: Layered Layouts
31.1 The Modular Sugiyama Method
31.2 CycleRemoval
31.3 Layer Assignment (Node Ranking)
31.4 Crossing Minimization (Node Ordering)
31.5 Node Positioning (Coordinate Assignment)
316 EdgeRouting o

11

32

33

34

35

36

Graph Drawing Algorithms: Force-Based Methods

32.1 Controlling and Configuring Force-Based Algorithms
32.1.1 Start Configuration L
32.1.2 The Iterative Process and Cooling
32.1.3 Forces and Their Effects: Springs
32.1.4 Forces and Their Effects: Electrical Repulsion
32.1.5 Coarsening
322 Spring Layouts
32.3 Spring Electrical Layouts o

Graph Drawing Algorithms: Circular Layouts

Graph Drawing Layouts: Phylogenetic Trees
34.1 Generating a Phylogenetic Tree o
34.2 Laying out the Phylogramo o

Graph Drawing Algorithms: Edge Routing

The Algorithm Layer

36.1 Overview e e
36.2 Getting Started
36.2.1 The Hello World of Graph Drawing
36.2.2 Declaring an Algorithm
36.2.3 The Run Method
36.2.4 Loading Algorithms on Demand
36.2.5 Declaring Options
36.2.6 Adding Inline Documentation L L.
36.2.7 Adding External Documentation,
36.3 Namespaces and File Names e
36.3.1 Namespaces o e
36.3.2 Defining and Using Namespaces and Classes
36.4 The Graph Drawing Scope o
36.5 The Model Classes o i it
36.5.1 Directed Graphs (Digraphs)
36.5.2 Vertices
36.5.3 ATCS
36.5.4 Edges
36.5.5 Collections L
36.5.6 Coordinates, Paths, and Transformations
36.5.7 Options and Data Storages for Vertices, Arcs, and Digraphs
36.5.8 Events
36.6 Graph Transformations e
36.6.1 The Layout Pipeline
36.6.2 Hints For Edge Routing Lo L.
36.7 The Interface To Algorithms
36.8 Examples of Implementations of Graph Drawing Algorithms
36.8.1 The “Hello World” of Graph Drawing
36.8.2 How To Generate Edges Inside an Algorithm
36.8.3 How To Generate Nodes Inside an Algorithm
36.9 Support Libraries
36.9.1 Basic Functions Lo
36.9.2 Lookup Tables
36.9.3 Computing Distances in Graphs
36.9.4 Priority Queues

12

473
474
474
474
476
477
478
479
479

481

483
483
485

488

37

38

39

40

41

42

43

44

45

46

47

Writing Graph Drawing Algorithms in C

37.1 How C and TgX Communicate
37.2 Writing Graph Drawing Algorithmsin C
37.2.1 The Hello World of Graph Drawing in C . . .
37.2.2 Documenting Algorithms Written in C
37.2.3 The Interface From C
37.3 Writing Graph Drawing Algorithms in C+4+
37.3.1 The Hello World of Graph Drawing in C++ .
37.3.2 The Interface From C++
37.4 Writing Graph Drawing Algorithms Using OGDF . . .

37.4.1 The Hello World of Graph Drawing in OGDF —
37.4.2 The Hello World of Graph Drawing in OGDF —
37.4.3 Documenting OGDF Algorithms
37.4.4 The Interface From OGDF

The Display Layer

38.1 Introduction: The Interplay of the Different Layers . .
38.2 An Example Display System
38.3 The Interface to Display Systems

The Binding Layer

39.1 Overview e
39.2 The Binding Class and the Interface Core.
39.3 The Binding ToPGF
39.4 An Example Binding Class
Libraries

Three Dimensional Drawing Library

40.1 Coordinate Systems
40.2 Coordinate Planes
40.2.1 Switching to an arbitrary plane
40.2.2 Predefined planes
40.3 Examples Lo

Angle Library
Arrow Tip Library

Automata Drawing Library

43.1 Drawing Automata
43.2 States With and Without Output
43.3 Initial and Accepting States
434 Exampleso

Babel Library
Background Library
Calc Library

Calendar Library

47.1 Calendar Command
47.1.1 Creating a Simple List of Days
47.1.2 Adding a Month Label
47.1.3 Creating a Week List Arrangement
47.1.4 Creating a Month List Arrangement
472 Arrangements oL
473 Month Labels 0oL

13

539
539
540
540
542
542
543
543
544
546
546
047
548
548

From Scratch
Adapting Existing Classes . .

549
549
550
551

557
557
557
560
560

563

564
564
564
565
565
566

568
570

571
571
572
572
574

576

577

48

49

50

474 Examples L e e
Chains
48.1 OVervIew e e e e
48.2 Starting and Continuing a Chain Lo
48.3 Nodesona Chain 0
48.4 Joining Nodes on a Chain L L
48.5 Branches e
Circuit Libraries
49.1 Imtroduction L e e
49.1.1 A First Example
49.1.2 Symbols
49.1.3 Symbol Graphics L
49.1.4 Annotations
49.2 The Base Circuit Library o o
49.2.1 Symbol Size
49.2.2 Declaring New Symbols L
49.2.3 Pointing Symbols in the Right Direction
49.2.4 Info Labels
49.2.5 Declaring and Using Annotations
49.2.6 Theming Symbols. L
49.3 Logical Circuits e
49.3.1 OVerview e e e e
49.3.2 Symbols: The Gates
49.3.3 Implementation: The Logic Gates Shape Library
49.3.4 Implementation: The US-Style Logic Gates Shape Library
49.3.5 Implementation: The IEC-Style Logic Gates Shape Library
49.4 Electrical Engineering Circuits oL oL o
49.4.1 OVerview e
49.4.2 Symbols: Indicating Current Directions
49.4.3 Symbols: Basic Elements Lo oo
49.4.4 Symbols: Diodes L
49.4.5 Symbols: Contacts L
49.4.6 Symbols: Measurement devices oL oL
49.4.7 Units oL e e
49.4.8 Annotations
49.4.9 Implementation: The EE-Symbols Shape Library
49.4.10 Implementation: The IEC-Style EE-Symbols Shape Library
Decoration Library
50.1 Overview and Common Options
50.2 Handling “Dimension too large” errors
50.3 Path Morphing Decorations
50.3.1 Decorations Producing Straight Line Paths
50.3.2 Decorations Producing Curved Line Paths
50.4 Path Replacing Decorations
50.5 Marking Decorations e
50.5.1 Overview e
50.6 Arbitrary Markings
50.6.1 Arrow Tip Markings
50.6.2 Footprint Markings Lo
50.6.3 Shape Background Markings 0.
50.7 Text Decorations e
50.8 Fractal Decorations L

14

51

52

53

54

55

56

57

58

Entity-Relationship Diagram Drawing Library
51.1 Entities oL e e
51.2 Relationships. e
51.3 Attributes L e
Externalization Library
521 OVErvIEW e e
52.2 Requirements e
52.3 A Word About ConTEXt And Plain TEX
52.4 Externalizing Graphics L L
52.4.1 Support for Labels and References In External Files
52.4.2 Customizing the Generated File Names
52.4.3 Remaking Figures or Skipping Figures
52.4.4 Customizing the Externalization
52.4.5 Details About The Process
52.5 Using External Graphics Without PGF Installed
52.6 eps Graphics Export e
52.7 Bitmap Graphics Export
52.8 Compatibility Issues L
52.8.1 References In External Pictures
52.8.2 Compatibility With Other Libraries or Packages
52.8.3 Compatibility With Bounding Box Restrictions
52.8.4 Interoperability With The Basic Layer Externalization
Fading Library
Fitting Library
Fixed Point Arithmetic Library
551 OVerview e e
55.2 Using Fixed Point Arithmetic in PGF and TikZ
Floating Point Unit Library
56.1 OVerview e
06.2 Usage
56.3 Comparison to the fixed point arithmetics library
56.4 Command Reference and Programmer’s Manual
56.4.1 Creating and Converting Floats
56.4.2 Symbolic Rounding Operations
56.4.3 Math Operations Commands
56.4.4 Accessing the Original Math Routines for Programmers
Lindenmayer System Drawing Library
B7.1 OVerview o e e e e
57.1.1 Declaring L-systems L
57.2 Using Lindenmayer Systems e
57.2.1 Using L-Systems in PGF o
57.2.2 Using L-Systems in TikZ
Math Library
B8.1 OVErvIeW e
58.2 Assignment e
58.3 Integers, “Real” Numbers, and Coordinates
58.4 Repeating Things e
58.5 Branching Statements L L
58.6 Declaring Functions Lo
58.7 Executing Code Outside the Parser

15

667
667
667
668

669
669
669
669
669
671
672
673
676
679
680
680
681
681
681
682
682
682

683

684

59

60

61

62

63

64

65

66

67

68

Matrix Library

59.1 Matrices of Nodes e
59.2 End-of-Lines and End-of-Row Characters in Matrices of Nodes
59.3 Delimiters e e e
Mindmap Drawing Library
60.1 OVErvIew e e e
60.2 The Mindmap Style
60.3 Concepts Nodes e
60.3.1 Isolated Concepts
60.3.2 Conceptsin Trees o L
60.4 Connecting Concepts o v v vt i e e
60.4.1 Simple Connections
60.4.2 The Circle Connection Bar Decoration
60.4.3 The Circle Connection Bar To-Path
60.4.4 Tree Edges
60.5 Adding Annotations e

Paper-Folding Diagrams Library

Pattern Library

62.1 Form-Only Patterns
62.2 Inherently Colored Patterns
62.3 User-Defined Patterns
Three Point Perspective Drawing Library

63.1 Coordinate Systems L
63.2 Setting the view e e e
63.3 Defining the perspective L
63.4 Shortcomings L
63.5 Examples
Petri-Net Drawing Library

64.1 Places. e e
64.2 Transitions L. e e
64.3 Tokens e e
64.4 Examples e e e
Plot Handler Library

65.1 Curve Plot Handlers e
65.2 Constant Plot Handlers
65.3 Comb Plot Handlers. e
65.4 Bar Plot Handlers
65.5 Gapped Plot Handlers
65.6 Mark Plot Handler e

Plot Mark Library

Profiler Library

67.1 Overview e e
67.2 Requirements e e
67.3 Defining Profiler Entrieso
Resource Description Framework Library
68.1 Starting the RDF Engine L
68.2 Creating Statements. L
68.3 Creating Resources
68.4 Creating Containers e
68.5 Creating Semantic Information Inside Styles and Libraries
68.5.1 An Example Library for Drawing Finite Automata

16

709
709
710
711

713
713
713
714
714
715
17
717
718
719
720
721

723

730
730
731
731

738
738
738
739
741
741

744
744
744
745
47

749
749
750
751
752
755
755

758

69

70

71

72

73

74

75

76

77

78

VI

79

68.5.2 Adding Semantic Information About the Automata as a Whole
68.5.3 Adding Semantic Information About the States
68.5.4 Adding Semantic Information About the Transitions
68.5.5 Using Containers
68.5.6 The Resulting RDF Graph

Shadings Library

Shadows Library

T0.1 OVErVIEW o o o e e e e

70.2 The General Shadow Option

70.3 Shadows for Arbitrary Paths and Shapes
70.3.1 Drop Shadows e
70.3.2 Copy Shadows e

70.4 Shadows for Special Paths and Nodes

Shape Library

TLL OVerview o o

71.2 Predefined Shapes e

71.3 Geometric Shapes L e

71.4 Symbol Shapes. e

71.5 Arrow Shapes e

71.6 Shapes with Multiple Text Parts

71.7 Callout Shapes e

71.8 Miscellaneous Shapes e

Spy Library: Magnifying Parts of Pictures

72.1 Magnifying a Part of a Picture

T2.2 SPY SCOPES .« v v o v e e e e e e e

72.3 The Spy Command L

72.4 Predefined Spy Styles

72.5 Examples oL e

SVG-Path Library

To Path Library

74.1 Straight Lines e

742 Move-Tos L

T4.3 CUIVES o e e

T4.4 LOODS . .« o o e e e

Through Library

Tree Library

76.1 Growth Functions e

76.2 Edges From Parent

Turtle Graphics Library

Views Library

Data Visualization

Introduction to Data Visualization

79.1 Concept: Data Points

79.2 Concept: Visualization Pipeline o

17

776

780
780
780
781
781
781
782

785
785
785
786
801
810
816
822
826

831
831
832
832
834
835

837

838
838
838
838
841

843

844
844
846

847

849

80

81

82

Creating Data Visualizations

80.1 OVErvIiewo e e
80.2 Concept: Data Points and Data Formats
80.3 Concept: Axes, Ticks, and Grids
80.4 Concept: Visualizers e
80.5 Concept: Style Sheets and Legends
80.6 Usage o e e e
80.7 Advanced: Executing User Code During a Data Visualization
80.8 Advanced: Creating New Objects

Providing Data for a Data Visualization

8L.1 OVerview e e e e
81.2 Concepts e
81.3 Reference: Built-In Formats 0oL
81.4 Reference: Advanced Formats
81.5 Advanced: The Data Parsing Process
81.6 Advanced: Defining New Formats

Axes

82.1 OVerview e

82.2 Basic Configuration of Axes
82.2.1 Usage e
82.2.2 The Axis Attribute
82.2.3 The Axis Attribute Range Interval
82.2.4 Scaling: The General Mechanism
82.2.5 Scaling: Logarithmic Axes
82.2.6 Scaling: Setting the Length or Unit Length
82.2.7 AxisLabel
82.2.8 Reference: Axis Types e

82.3 Axis Systems
82.3.1 Usage e e
82.3.2 Reference: Scientific Axis Systems Lo
82.3.3 Reference: School Book Axis Systems
82.3.4 Advanced Reference: Underlying Cartesian Axis Systems

82.4 Ticksand Grids
82.4.1 Concepts
82.4.2 The Main Options: Tick and Grid
82.4.3 Semi-Automatic Computation of Tick and Grid Line Positions
82.4.4 Automatic Computation of Tick and Grid Line Positions
82.4.5 Manual Specification of Tick and Grid Line Positions
82.4.6 Styling Ticks and Grid Lines: Introduction
82.4.7 Styling Ticks and Grid Lines: The Style and Node Style Keys
82.4.8 Styling Ticks and Grid Lines: Styling Grid Lines
82.4.9 Styling Ticks and Grid Lines: Styling Ticks and Tick Labels
82.4.10 Styling Ticks and Grid Lines: Exceptional Ticks
82.4.11 Styling Ticks and Grid Lines: Styling and Typesetting a Value
82.4.12 Stacked Ticks L
82.4.13 Reference: Basic Strategies L oL
82.4.14 Advanced: Defining New Placement Strategies

82.5 Advanced: Creating New Axis Systems
82.5.1 Creating the Axes
82.5.2 Visualizing the Axes L
82.5.3 Visualizing Grid Lines
82.5.4 Visualizing the Ticks and Tick Labels
82.5.5 Visualizing the Axis Labels
82.5.6 The Complete Axis System
82.5.7 Using the New Axis System Key

18

83

84

85

86

Visualizers

83.1 OVerview e e e
83.2 Usage e e
83.2.1 Using a Single Visualizer o
83.2.2 Using Multiple Visualizers
83.2.3 Styling a Visualizer L
83.3 Reference: Basic Visualizers
83.3.1 Visualizing Data Points Using Lines
83.3.2 Visualizing Data Points Using Marks
83.4 Advanced: Creating New Visualizers
Style Sheets and Legends
84.1 OVverview e e
84.2 Concepts: Style Sheets L
84.3 Concepts: Legends e
84.4 Usage: Style Sheets
84.4.1 Picking a Style Sheet
84.4.2 Creating a New Style Sheet
84.4.3 Creating a New Color Style Sheet
84.5 Reference: Style Sheets for Lines o oo
84.6 Reference: Style Sheets for Scatter Plots
84.7 Reference: Color Style Sheets
84.8 Usage: Labeling Data Sets Inside the Visualization
84.8.1 Placing a Label Next toa Data Set
84.8.2 Connecting a Label to a Data Set viaa Pin
84.9 Usage: Labeling Data Sets Inside a Legend
84.9.1 Creating Legends and Legend Entries
84.9.2 Rows and Columns of Legend Entries
84.9.3 Legend Placement: The General Mechanism
84.9.4 Legend Placement: Outside to the Data Visualization
84.9.5 Legend Placement: Inside to the Data Visualization
84.9.6 Legend Entries: General Styling
84.9.7 Legend Entries: Styling the Text Node
84.9.8 Legend Entries: Text Placement
84.9.9 Advanced: Labels in Legends and Their Visualizers
84.9.10 Reference: Label in Legend Visualizers for Lines and Scatter Plots
Polar Axes
85.1 Overview e e
85.2 Scientific Polar Axis System
85.2.1 Tick Placements L
85.2.2 Angle Ranges
85.3 Advanced: Creating a New Polar Axis System
The Data Visualization Backend
86.1 OVEIVIEW o e e
86.2 The Rendering Pipeline
86.3 Usage
86.4 The Mathematical Micro-Kernel

VII Utilities

87 Key Management

87.1 Imtroduction
87.1.1 Comparison to Other Packages
87.1.2 Quick Guide to Using the Key Mechanism
87.2 TheKey Tree o o o e e
87.3 Setting Keys e e e

19

920
920
920
920
921
922
924
924
927
927

930
930
930
931
932
932
933
935
935
937
938
940
940
942
943
944
946
950
950
952
954
955
956
956
958

963
963
964
965
966
970

972
972
972
972
972

87.3.1 First Char Syntax Detection
87.3.2 Default Arguments
87.3.3 Keys That Execute Commands
87.3.4 Keys That Store Values
87.3.5 Keys That Are Handled
87.3.6 Keys That Are Unknown
87.3.7 Search Paths And Handled Keys
87.4 Key Handlers e
87.4.1 Handlers for Path Management
87.4.2 Setting Defaults Lo
87.4.3 Defining Key Codes L
87.4.4 Defining Styles
87.4.5 Defining Value-, Macro-, If- and Choice-Keys
87.4.6 Expanded and Multiple Values
87.4.7 Handlers for Forwarding o
87.4.8 Handlers for Testing Keys oL
87.4.9 Handlers for Key Inspection 0oL
87.5 Error Keys e e
87.6 Key Filtering e
87.6.1 Starting With An Example oL
87.6.2 Setting Filters
87.6.3 Handlers For Unprocessed Keys
87.6.4 Family Support
87.6.5 Other Key Filters
87.6.6 Programmer Interface L o o
87.6.7 Defining Own Filters Or Filter Handlers

88 Repeating Things: The Foreach Statement

89 Date and Calendar Utility Macros

89.1 Handling Dates e
89.1.1 Conversions Between Date Types
89.1.2 Checking Dates L
89.1.3 Typesetting Dates oo Lo
89.1.4 Localization Lo
89.2 Typesetting Calendars Lo
90 Page Management
90.1 Basic Usage e e e e e
90.2 The Predefined Layouts
90.3 Defining a Layout L
90.4 Creating Logical Pages

91 Extended Color Support

92 Parser Module

92.1 Keys of the Parser Module

92.2 Examples

VIII Mathematical and Object-Oriented Engines

93 Design Principles
93.1 Loading the Mathematical Engine
93.2 Layers of the Mathematical Engine
93.3 Efficiency and Accuracy of the Mathematical Engine

20

1001

1007
1007
1007
1008
1009
1010
1010

1014
1014
1015
1017
1020

1021

1022
1024
1024

94

95

96

97

98

IX

99

100

Mathematical Expressions

94.1 Parsing Expressions Lo
94.1.1 Commands e e e
94.1.2 Considerations Concerning Units
94.2 Syntax for Mathematical Expressions: Operators
94.3 Syntax for Mathematical Expressions: Functions
94.3.1 Basic arithmetic functions oL
94.3.2 Rounding functions
94.3.3 Integer arithmetics functions,
94.3.4 Trigonometric functions oo
94.3.5 Comparison and logical functions
94.3.6 Pseudo-random functions Lo
94.3.7 Base conversion functions Lo
94.3.8 Miscellaneous functions L

Additional Mathematical Commands

95.1 Basic arithmetic functions
95.2 Comparison and logical functions L.
95.3 Pseudo-Random Numbers
95.4 Base Conversion e e
95.5 Angle Computations L

Customizing the Mathematical Engine

Number Printing

97.1 Changing display styleso

Object-Oriented Programming

98.1 OVerview e e e e e
98.2 A Running Example: The Stamp Class
98.3 Classes e
98.4 Objects
98.5 Methods L
98.6 Attributes e
98.7 Identities e
98.8 The Object Class o o i
98.9 The Signal Class e
98.10 Implementation Notes L o

The Basic Layer

Design Principles

99.1 Coreand Modules
99.2 Communicating with the Basic Layer via Macros
99.3 Path-Centered Approach
99.4 Coordinate Versus Canvas Transformations

Hierarchical Structures: Package, Environments, Scopes, and Text

100.1 Overview o oo o
100.1.1 The Hierarchical Structure of the Package
100.1.2 The Hierarchical Structure of Graphics

100.2 The Hierarchical Structure of the Package
100.2.1 The Core Package
100.2.2 The Modules
100.2.3 The Library Packages

100.3 The Hierarchical Structure of the Graphics
100.3.1 The Main Environment
100.3.2 Graphic Scope Environments 0oL

21

1028
1028
1028
1030
1031
1033
1033
1036
1037
1037
1040
1041
1042
1043

1045
1045
1045
1045
1046
1047

1048

1051
1056

1062
1062
1062
1062
1063
1064
1065
1067
1068
1068
1069

100.3.3 Imserting Text and Images L o

100.4 Object Identifiers e
100.4.1 Commands for Creating Graphic Objects
100.4.2 Settings and Querying Identifiers oo

100.5 Resource Description Framework Annotations (RDFa)

100.6 Error Messages and Warnings oL Lo

101 Specifying Coordinates

1011 Overview o o e e

101.2 Basic Coordinate Commands

101.3 Coordinates in the XY-Coordinate System

101.4 Three Dimensional Coordinates i

101.5 Building Coordinates From Other Coordinates
101.5.1 Basic Manipulations of Coordinates
101.5.2 Points Traveling along Lines and Curves
101.5.3 Points on Borders of Objects
101.5.4 Points on the Intersection of Lines
101.5.5 Points on the Intersection of Two Circles
101.5.6 Points on the Intersection of Two Paths

101.6 Extracting Coordinates L L

101.7 Imternals of How Point Commands Work

102 Constructing Paths

102.1 OVerview oo e e e

102.2 The Move-To Path Operation

102.3 The Line-To Path Operation

102.4 The Curve-To Path Operations

102.5 The Close Path Operation,

102.6 Arc, Ellipse and Circle Path Operations

102.7 Rectangle Path Operations

102.8 The Grid Path Operation

102.9 The Parabola Path Operation

102.10 Sine and Cosine Path Operations

102.11 Plot Path Operations

102.12 Rounded Corners e e

102.13 Internal Tracking of Bounding Boxes for Paths and Pictures

103 Decorations

103.1 OVerview

103.2 Decoration Automata
103.2.1 The Different Paths
103.2.2 Segments and States

103.3 Declaring Decorations L L
103.3.1 Predefined Decorationso

103.4 Using Decorations e

103.5 Meta-Decorations L e e
103.5.1 Declaring Meta-Decorations L o L.
103.5.2 Predefined Meta-decorations
103.5.3 Using Meta-Decorations Lo

104 Using Paths

104.1 OVerview o e e e

104.2 Strokinga Path
104.2.1 Graphic Parameter: Line Width
104.2.2 Graphic Parameter: Caps and Joins
104.2.3 Graphic Parameter: Dashing
104.2.4 Graphic Parameter: Stroke Color
104.2.5 Graphic Parameter: Stroke Opacity
104.2.6 Inmer Lines L

22

105

106

107

108

104.3 Arrow TipsonaPath

104.4 Fillinga Path
104.4.1 Graphic Parameter: Interior Rule
104.4.2 Graphic Parameter: Filling Color
104.4.3 Graphic Parameter: Fill Opacity
104.5 Clippinga Path
104.6 Using a Path as a Bounding Box o .
Defining New Arrow Tip Kinds
105.1 Overview o e e e
105.2 Terminology L e
105.3 Caching and Rendering of Arrows L L
105.4 Declaring an Arrow Tip Kind L oo
105.5 Handling Arrow Options
105.5.1 Dimension Options L
105.5.2 True—False Options
105.5.3 Inaccessible Options
105.5.4 Defining New Arrow Keys o e
Nodes and Shapes
106.1 OVEIVIEW o o e e e e e e e e
106.1.1 Creating and Referencing Nodes
106.1.2 Anchors L
106.1.3 Layersofa Shape L
106.1.4 Node Parts e
106.2 Creating Nodes e
106.2.1 Creating Simple Nodes L
106.2.2 Creating Multi-Part Nodes
106.2.3 Deferred Node Positioning L L.
106.3 Using Anchors e
106.3.1 Referencing Anchors of Nodes in the Same Picture
106.3.2 Referencing Anchors of Nodes in Different Pictures
106.4 Special Nodes e
106.5 Declaring New Shapes e
106.5.1 What Must Be Defined For a Shape?
106.5.2 Normal Anchors Versus Saved Anchors
106.5.3 Command for Declaring New Shapes
Matrices
107.1 OVerview o o e
107.2 Cell Pictures and Their Alignment L .
107.3 The Matrix Command
107.4 Row and Column Spacing L e
107.5 Callbacks e
Coordinate, Canvas, and Nonlinear Transformations
108.1 OVerview o e e
108.2 Coordinate Transformations L
108.2.1 How PGF Keeps Track of the Coordinate Transformation Matrix
108.2.2 Commands for Relative Coordinate Transformations
108.2.3 Commands for Absolute Coordinate Transformations
108.2.4 Saving and Restoring the Coordinate Transformation Matrix
108.2.5 Applying Coordinate Transformation to Points
108.2.6 Computing Adjustments for Coordinate Transformations
108.3 Canvas Transformations L L
108.3.1 Applying General Canvas Transformations
108.3.2 Establishing View Boxes L oo
108.4 Nonlinear Transformations L L
108.4.1 Introduction

109

110

111

112

113

114

115

116

108.4.2 Installing Nonlinear Transformation

108.4.3 Applying Nonlinear Transformations to Points
108.4.4 Applying Nonlinear Transformations to Paths
108.4.5 Applying Nonlinear Transformations to Text
108.4.6 Approximating Nonlinear Transformations Using Linear Transformations
108.4.7 Nonlinear Transformation Libraries
Patterns
109.1 OVerview o e e e
109.2 Declaring a Pattern L
109.3 Setting a Pattern L
Declaring and Using Images
110.1 OVerview o o e e e
110.2 Declaring an Image L L
110.3 Usingan Image e
110.4 Masking an Image
Externalizing Graphics
1111 OVErvIew o o e e e e e e e e e e
111.2 Workflow Step 1: Naming Graphics
111.3 Workflow Step 2: Generating the External Graphics
111.4 Workflow Step 3: Including the External Graphics
111.5 A Complete Example 0o
Creating Plots
112.1 OVerview o o e e e
112.2 Generating Plot Streams
112.2.1 Basic Building Blocks of Plot Streams
112.2.2 Commands That Generate Plot Streams
112.3 Plot Handlers L
112.4 Defining New Plot Handlers
Layered Graphics
113. 1 Overview o o e e e
113.2 Declaring Layers e
113.3 Using Layers o o o e
Shadings
114.1 OVerview o o o e
114.1.1 Color models e
114.2 Declaring Shadings L e
114.2.1 Horizontal and Vertical Shadings
114.2.2 Radial Shadings L
114.2.3 General (Functional) Shadings,
114.3 Using Shadings e
Transparency
115.1 Specifying a Uniform Opacity
115.2 Specifying a Blend Mode e
115.3 Specifying a Fading L e
115.4 Transparency Groups o v v vttt e e
Animations
116.1 OVerview o o e e
116.2 Animating an Attribute
116.2.1 The Main Command L
116.2.2 Specifying the Timeline o
116.2.3 “Anti-Animations”: Snapshots
116.3 Animating Color, Opacity, Visibility, and Staging

24

116.4
116.5
116.6
116.7

Animating Paths and their Rendering 0oL
Animating Transformations and Views
Commands for Specifying Timing: Beginnings and Endings
Commands for Specifying Timing: Repeats

117 Adding libraries to pgf: temporary registers

118 Quick Commands

118.1
118.2
118.3
118.4

Quick Coordinate Commands Lo
Quick Path Construction Commands
Quick Path Usage Commands
Quick Text Box Commands

X The System Layer

119 Design of the System Layer

119.1
119.2

Driver Files e e
Common Definition Files e

120 Commands of the System Layer

120.1
120.2
120.3
120.4
120.5
120.6
120.7
120.8
120.9
120.10
120.11
120.12
120.13
120.14
120.15
120.16
120.17
120.18
120.19

Beginning and Ending a Stream of System Commands
Scoping System Commands L L
Path Construction System Commands
Canvas Transformation System Commands
Stroking, Filling, and Clipping System Commands
Graphic State Option System Commands
Color System Commands
Pattern System Commands L L
Image System Commands L
Shading System Commands
Transparency System Commands Lo
Animation Commands
Object Identification System Commands
Resource Description Framework Annotations (RDFa)
Reusable Objects System Commands
Invisibility System Commands L
Page Size Commands L
Position Tracking Commands L
Internal Conversion Commands o

121 The Soft Path Subsystem

121.1
121.2
121.3
121.4

Path Creation Process o
Starting and Ending a Soft Path oo oo
Soft Path Creation Commands
The Soft Path Data Structure

122 The Protocol Subsystem

123 Animation System Layer

123.1
123.2
123.3
123.4
123.5
123.6
123.7
123.8
123.9
123.10

Animations and Snapshots
Commands for Animating an Attribute: Color, Opacity, Visibility, Staging
Commands for Animating an Attribute: Paths and Their Rendering
Commands for Animating an Attribute: Transformations and Views
Commands for Specifying the Target Object
Commands for Specifying Timelines: Specifying Times
Commands for Specifying Timelines: Specifying Values
Commands for Specifying Timing: Repeats
Commands for Specifying Timing: Beginning and Ending
Commands for Specifying Timing: Restart Behaviour

25

1231

1232
1232
1232

1233
1233
1234
1234
1235
1236
1237
1238
1240
1240
1241
1242
1243
1243
1244
1245
1246
1246
1247
1247

1249
1249
1249
1250
1250

1252

123.11 Commands for Specifying Accumulation

XI References and Index

Index

26

1 Introduction

Welcome to the documentation of TikZ and the underlying PGF system. What began as a small KTEX style
for creating the graphics in my (Till Tantau’s) PhD thesis directly with pdfIATEX has now grown to become a
full-blown graphics language with a manual of over a thousand pages. The wealth of options offered by TikZ
is often daunting to beginners; but fortunately this documentation comes with a number of slowly-paced
tutorials that will teach you almost all you should know about TikZ without your having to read the rest.

I wish to start with the questions “What is TikZ?” Basically, it just defines a number of TEX commands
that draw graphics. For example, the code \tikz \draw (Opt,Opt) -- (20pt,6pt); yields the line —
and the code \tikz \fill[orange] (lex,lex) circle (lex); yields @. In a sense, when you use TikZ
you “program” your graphics, just as you “program” your document when you use TEX. This also explains
the name: TikZ is a recursive acronym in the tradition of “GNU’s Not Unix” and means “TikZ ist kein
Zeichenprogramm”, which translates to “TikZ is not a drawing program”, cautioning the reader as to what
to expect. With TikZ you get all the advantages of the “TEX-approach to typesetting” for your graphics:
quick creation of simple graphics, precise positioning, the use of macros, often superior typography. You also
inherit all the disadvantages: steep learning curve, no WySIWYG, small changes require a long recompilation
time, and the code does not really “show” how things will look like.

Now that we know what TikZ is, what about “PGF”? As mentioned earlier, TikZ started out as a
project to implement TEX graphics macros that can be used both with pdfI4TEX and also with the classical
(PostScript-based) IATEX. In other words, I wanted to implement a “portable graphics format” for TEX —
hence the name PGF. These early macros are still around and they form the “basic layer” of the system
described in this manual, but most of the interaction an author has these days is with TikZ — which has
become a whole language of its own.

1.1 The Layers Below TikZ
It turns out that there are actually two layers below TikZ:

System layer: This layer provides a complete abstraction of what is going on “in the driver”. The driver
is a program like dvips or dvipdfm that takes a .dvi file as input and generates a .ps or a .pdf file.
(The pdftex program also counts as a driver, even though it does not take a .dvi file as input. Never
mind.) Each driver has its own syntax for the generation of graphics, causing headaches to everyone
who wants to create graphics in a portable way. PGF’s system layer “abstracts away” these differences.
For example, the system command \pgfsys@lineto{10pt}{10pt} extends the current path to the
coordinate (10pt, 10pt) of the current {pgfpicture}. Depending on whether dvips, dvipdfm, or
pdftex is used to process the document, the system command will be converted to different \special
commands. The system layer is as “minimalistic” as possible since each additional command makes it
more work to port PGF to a new driver.

As a user, you will not use the system layer directly.

Basic layer: The basic layer provides a set of basic commands that allow you to produce complex graphics
in a much easier manner than by using the system layer directly. For example, the system layer provides
no commands for creating circles since circles can be composed from the more basic Bézier curves (well,
almost). However, as a user you will want to have a simple command to create circles (at least I do)
instead of having to write down half a page of Bézier curve support coordinates. Thus, the basic layer
provides a command \pgfpathcircle that generates the necessary curve coordinates for you.

The basic layer consists of a core, which consists of several interdependent packages that can only be
loaded en bloc, and additional modules that extend the core by more special-purpose commands like
node management or a plotting interface. For instance, the BEAMER package uses only the core and
not, say, the shapes modules.

In theory, TikZ itself is just one of several possible “frontends”. which are sets of commands or a special
syntax that makes using the basic layer easier. A problem with directly using the basic layer is that code
written for this layer is often too “verbose”. For example, to draw a simple triangle, you may need as many
as five commands when using the basic layer: One for beginning a path at the first corner of the triangle,
one for extending the path to the second corner, one for going to the third, one for closing the path, and
one for actually painting the triangle (as opposed to filling it). With the TikZ frontend all this boils down
to a single simple METAFONT-like command:

\draw (0,0) -- (1,0) -- (1,1) -- cycle;

27

In practice, TikZ is the only “serious” frontend for PGF. It gives you access to all features of PGF, but
it is intended to be easy to use. The syntax is a mixture of METAFONT and PSTRICKS and some ideas
of myself. There are other frontends besides TikZ, but they are intended more as “technology studies”
and less as serious alternatives to TikZ. In particular, the pgfpict2e frontend reimplements the standard
IXTEX {picture} environment and commands like \1ine or \vector using the PGF basic layer. This layer
is not really “necessary” since the pict2e.sty package does at least as good a job at reimplementing the
{picture} environment. Rather, the idea behind this package is to have a simple demonstration of how a
frontend can be implemented.

Since most users will only use TikZ and almost no one will use the system layer directly, this manual is
mainly about TikZ in the first parts; the basic layer and the system layer are explained at the end.

1.2 Comparison with Other Graphics Packages

TikZ is not the only graphics package for TEX. In the following, I try to give a reasonably fair comparison
of TikZ and other packages.

1. The standard IATEX {picture} environment allows you to create simple graphics, but little more. This
is certainly not due to a lack of knowledge or imagination on the part of INTEX’s designer(s). Rather,
this is the price paid for the {picture} environment’s portability: It works together with all backend
drivers.

2. The pstricks package is certainly powerful enough to create any conceivable kind of graphic, but it
is not really portable. Most importantly, it does not work with pdftex nor with any other driver that
produces anything but PostScript code.

Compared to TikZ, pstricks has a similar support base. There are many nice extra packages for
special purpose situations that have been contributed by users over the last decade. The TikZ syntax
is more consistent than the pstricks syntax as TikZ was developed “in a more centralized manner”
and also “with the shortcomings on pstricks in mind”.

3. The xypic package is an older package for creating graphics. However, it is more difficult to use and
to learn because the syntax and the documentation are a bit cryptic.

4. The dratex package is a small graphic package for creating a graphics. Compared to the other package,
including TikZ, it is very small, which may or may not be an advantage.

5. The metapost program is a powerful alternative to TikZ. It used to be an external program, which
entailed a bunch of problems, but in LuaTEX it is now built in. An obstacle with metapost is the
inclusion of labels. This is much easier to achieve using PGF.

6. The xfig program is an important alternative to TikZ for users who do not wish to “program” their
graphics as is necessary with TikZ and the other packages above. There is a conversion program that
will convert xfig graphics to TikZ.

1.3 Utility Packages

The PGF package comes along with a number of utility package that are not really about creating graphics
and which can be used independently of PGF. However, they are bundled with PGF, partly out of convenience,
partly because their functionality is closely intertwined with PGF. These utility packages are:

1. The pgfkeys package defines a powerful key management facility. It can be used completely indepen-
dently of PGF.

2. The pgffor package defines a useful \foreach statement.

3. The pgfcalendar package defines macros for creating calendars. Typically, these calendars will be
rendered using PCGF’s graphic engine, but you can use pgfcalendar also typeset calendars using normal
text. The package also defines commands for “working” with dates.

4. The pgfpages package is used to assemble several pages into a single page. It provides commands for
assembling several “virtual pages” into a single “physical page”. The idea is that whenever TEX has a
page ready for “shipout”, pgfpages interrupts this shipout and instead stores the page to be shipped
out in a special box. When enough “virtual pages” have been accumulated in this way, they are scaled

28

down and arranged on a “physical page”, which then really shipped out. This mechanism allows you
to create “two page on one page” versions of a document directly inside IXTEX without the use of any
external programs. However, pgfpages can do quite a lot more than that. You can use it to put logos
and watermark on pages, print up to 16 pages on one page, add borders to pages, and more.

1.4 How to Read This Manual

This manual describes both the design of TikZ and its usage. The organization is very roughly according to
“user-friendliness”. The commands and subpackages that are easiest and most frequently used are described
first, more low-level and esoteric features are discussed later.

If you have not yet installed TikZ, please read the installation first. Second, it might be a good idea to
read the tutorial. Finally, you might wish to skim through the description of TikZ. Typically, you will not
need to read the sections on the basic layer. You will only need to read the part on the system layer if you
intend to write your own frontend or if you wish to port PGF to a new driver.

The “public” commands and environments provided by the system are described throughout the text.
In each such description, the described command, environment or option is printed in red. Text shown in
green is optional and can be left out.

1.5 Authors and Acknowledgements

The bulk of the PGF system and its documentation was written by Till Tantau. A further member of the main
team is Mark Wibrow, who is responsible, for example, for the PGF mathematical engine, many shapes, the
decoration engine, and matrices. The third member is Christian Feuersinger who contributed the floating
point library, image externalization, extended key processing, and automatic hyperlinks in the manual.

Furthermore, occasional contributions have been made by Christophe Jorssen, Jin-Hwan Cho, Olivier
Binda, Matthias Schulz, Renée Ahrens, Stephan Schuster, and Thomas Neumann.

Additionally, numerous people have contributed to the PGF system by writing emails, spotting bugs, or
sending libraries and patches. Many thanks to all these people, who are too numerous to name them all!

1.6 Getting Help
When you need help with PGF and TikZ, please do the following:

1. Read the manual, at least the part that has to do with your problem.

2. If that does not solve the problem, try having a look at the GitHub development page for PGF and
TikZ (see the title of this document). Perhaps someone has already reported a similar problem and
someone has found a solution.

3. On the website you will find numerous forums for getting help. There, you can write to help forums,
file bug reports, join mailing lists, and so on.

4. Before you file a bug report, especially a bug report concerning the installation, make sure that this
is really a bug. In particular, have a look at the .log file that results when you TEX your files. This
.log file should show that all the right files are loaded from the right directories. Nearly all installation
problems can be resolved by looking at the .log file.

5. As a last resort you can try to email me (Till Tantau) or, if the problem concerns the mathematical
engine, Mark Wibrow. I do not mind getting emails, I simply get way too many of them. Because
of this, I cannot guarantee that your emails will be answered in a timely fashion or even at all. Your
chances that your problem will be fixed are somewhat higher if you mail to the PGF mailing list
(naturally, I read this list and answer questions when I have the time).

29

Part 1
Tutorials and Guidelines
by Till Tantau

To help you get started with TikZ, instead of a long installation and configuration section, this manual starts
with tutorials. They explain all the basic and some of the more advanced features of the system, without
going into all the details. This part also contains some guidelines on how you should proceed when creating
graphics using TikZ.

\tikz \draw[thick,rounded corners=8pt]
(0,0) -- (0,2) -- (1,3.25) -- (2,2) -- (2,0) -- (0,2) -- (2,2) -- (0,0) -- (2,0);

30

2 Tutorial: A Picture for Karl’s Students

This tutorial is intended for new users of TikZ. It does not give an exhaustive account of all the features of
TikZ, just of those that you are likely to use right away.

Karl is a math and chemistry high-school teacher. He used to create the graphics in his worksheets and
exams using IWTEX’s {picture} environment. While the results were acceptable, creating the graphics often
turned out to be a lengthy process. Also, there tended to be problems with lines having slightly wrong angles
and circles also seemed to be hard to get right. Naturally, his students could not care less whether the lines
had the exact right angles and they find Karl’s exams too difficult no matter how nicely they were drawn.
But Karl was never entirely satisfied with the result.

Karl’s son, who was even less satisfied with the results (he did not have to take the exams, after all),
told Karl that he might wish to try out a new package for creating graphics. A bit confusingly, this package
seems to have two names: First, Karl had to download and install a package called PGF. Then it turns out
that inside this package there is another package called TikZ, which is supposed to stand for “TikZ ist kein
Zeichenprogramm”. Karl finds this all a bit strange and TikZ seems to indicate that the package does not
do what he needs. However, having used GNU software for quite some time and “GNU not being Unix”, there
seems to be hope yet. His son assures him that TikZ’s name is intended to warn people that TikZ is not a
program that you can use to draw graphics with your mouse or tablet. Rather, it is more like a “graphics
language”.

2.1 Problem Statement

Karl wants to put a graphic on the next worksheet for his students. He is currently teaching his stu-
dents about sine and cosine. What he would like to have is something that looks like this (ideally):

Y

The angle o is 30° in the example
1 (w/6 in radians). The sine of «, which
— is the height of the red line, is

sina = 1/2.

(SIS

sina By the Theorem of Pythagoras we

cosa have cos? o + sin® & = 1. Thus the

o z length of the blue line, which is the
cos o 1 cosine of o, must be

/ cosa=+/1-1/4=1V3.

This shows that tan «, which is the
height of the orange line, is

sin o tana =

N

_ sin «
1 tan o = =1/V3.
COS (v

2.2 Setting up the Environment

In TikZ, to draw a picture, at the start of the picture you need to tell TEX or I¥TEX that you want to
start a picture. In IATEX this is done using the environment {tikzpicture}, in plain TEX you just use
\tikzpicture to start the picture and \endtikzpicture to end it.

2.2.1 Setting up the Environment in IATEX
Karl, being a IATEX user, thus sets up his file as follows:

31

\documentclass{article} 7 say
\usepackage{tikz}
\begin{document}
We are working on
\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\end{tikzpicture}.
\end{document}

When executed, that is, run via pdflatex or via latex followed by dvips, the resulting will contain
something that looks like this:

We are working on
\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\end{tikzpicture}.

We are working on

Admittedly, not quite the whole picture, yet, but we do have the axes established. Well, not quite, but
we have the lines that make up the axes drawn. Karl suddenly has a sinking feeling that the picture is still
some way off.

Let’s have a more detailed look at the code. First, the package tikz is loaded. This package is a so-called
“frontend” to the basic PGF system. The basic layer, which is also described in this manual, is somewhat
more, well, basic and thus harder to use. The frontend makes things easier by providing a simpler syntax.

Inside the environment there are two \draw commands. They mean: “The path, which is specified follow-
ing the command up to the semicolon, should be drawn.” The first path is specified as (-1.5,0) -- (1.5,0),
which means “a straight line from the point at position (—1.5,0) to the point at position (1.5,0)”. Here, the
positions are specified within a special coordinate system in which, initially, one unit is lcm.

Karl is quite pleased to note that the environment automatically reserves enough space to encompass the
picture.

2.2.2 Setting up the Environment in Plain TpX

Karl’s wife Gerda, who also happens to be a math teacher, is not a IXTEX user, but uses plain TEX since
she prefers to do things “the old way”. She can also use TikZ. Instead of \usepackage{tikzl} she has
to write \input tikz.tex and instead of \begin{tikzpicture} she writes \tikzpicture and instead of
\end{tikzpicture} she writes \endtikzpicture.

Thus, she would use:

4% Plain TeX file
\input tikz.tex
\baselineskip=12pt
\hsize=6.3truein
\vsize=8.7truein
We are working on
\tikzpicture
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\endtikzpicture.
\bye

Gerda can typeset this file using either pdftex or tex together with dvips. TikZ will automatically
discern which driver she is using. If she wishes to use dvipdfm together with tex, she either needs to
modify the file pgf.cfg or can write \def\pgfsysdriver{pgfsys-dvipdfm.def} somewhere before she
inputs tikz.tex or pgf.tex.

2.2.3 Setting up the Environment in ConTEXt

Karl’s uncle Hans uses ConTEXt. Like Gerda, Hans can also use TikZ. Instead of \usepackage{tikz} he
says \usemodule[tikz]. Instead of \begin{tikzpicture} he writes \starttikzpicture and instead of
\end{tikzpicture} he writes \stoptikzpicture.

32

His version of the example looks like this:

A% ConTeXt file
\usemodule [tikz]

\starttext
We are working on
\starttikzpicture
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\stoptikzpicture.
\stoptext

Hans will now typeset this file in the usual way using texexec or context.

2.3 Straight Path Construction

The basic building block of all pictures in TikZ is the path. A path is a series of straight lines and curves
that are connected (that is not the whole picture, but let us ignore the complications for the moment). You
start a path by specifying the coordinates of the start position as a point in round brackets, as in (0,0).
This is followed by a series of “path extension operations”. The simplest is ——, which we used already. It
must be followed by another coordinate and it extends the path in a straight line to this new position. For
example, if we were to turn the two paths of the axes into one path, the following would result:

\tikz \draw (-1.5,0) -- (1.5,0) -- (0,-1.5) -- (0,1.5);

Karl is a bit confused by the fact that there is no {tikzpicture} environment, here. Instead, the little
command \tikz is used. This command either takes one argument (starting with an opening brace as in
\tikz{\draw (0,0) -- (1.5,0)}, which yields) or collects everything up to the next semicolon
and puts it inside a {tikzpicture} environment. As a rule of thumb, all TikZ graphic drawing commands
must occur as an argument of \tikz or inside a {tikzpicture} environment. Fortunately, the command
\draw will only be defined inside this environment, so there is little chance that you will accidentally do
something wrong here.

2.4 Curved Path Construction

The next thing Karl wants to do is to draw the circle. For this, straight lines obviously will not do. Instead,
we need some way to draw curves. For this, TikZ provides a special syntax. One or two “control points”
are needed. The math behind them is not quite trivial, but here is the basic idea: Suppose you are at point
2 and the first control point is y. Then the curve will start “going in the direction of y at x”, that is, the
tangent of the curve at x will point toward y. Next, suppose the curve should end at z and the second
support point is w. Then the curve will, indeed, end at z and the tangent of the curve at point z will go
through w.
Here is an example (the control points have been added for clarity):

° ® \begin{tikzpicture}

\filldraw [gray] (0,0) circle [radius=2pt]
(1,1) circle [radius=2pt]
(2,1) circle [radius=2pt]

(2,0) circle [radius=2pt];
\draw (0,0) .. controls (1,1) and (2,1) .. (2,0);

\end{tikzpicture}
The general syntax for extending a path in a “curved” way is .. controls (first control point) and
(second control point) .. {end point). You can leave out the and (second control point), which causes the

first one to be used twice.
So, Karl can now add the first half circle to the picture:

33

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);
\draw (-1,0) .. controls (-1,0.555) and (-0.555,1) .. (0,1)
.. controls (0.555,1) and (1,0.555) .. (1,0);

\end{tikzpicture}

Karl is happy with the result, but finds specifying circles in this way to be extremely awkward. Fortu-
nately, there is a much simpler way.

2.5 Circle Path Construction

In order to draw a circle, the path construction operation circle can be used. This operation is followed
by a radius in brackets as in the following example: (Note that the previous position is used as the center
of the circle.)

<:::> \tikz \draw (0,0) circle [radius=10pt];

You can also append an ellipse to the path using the ellipse operation. Instead of a single radius you
can specify two of them:

<:i::::::> \tikz \draw (0,0) ellipse [x radius=20pt, y radius=10pt];

To draw an ellipse whose axes are not horizontal and vertical, but point in an arbitrary direction (a
“turned ellipse” like C’) you can use transformations, which are explained later. The code for the little
ellipse is \tikz \draw[rotate=30] (0,0) ellipse [x radius=6pt, y radius=3pt];, by the way.

So, returning to Karl’s problem, he can write \draw (0,0) circle [radius=1cm]; to draw the cir-
cle:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\\\\\\——////// \end{tikzpicture}

At this point, Karl is a bit alarmed that the circle is so small when he wants the final picture to be much
bigger. He is pleased to learn that TikZ has powerful transformation options and scaling everything by a
factor of three is very easy. But let us leave the size as it is for the moment to save some space.

2.6 Rectangle Path Construction

The next things we would like to have is the grid in the background. There are several ways to produce it.
For example, one might draw lots of rectangles. Since rectangles are so common, there is a special syntax
for them: To add a rectangle to the current path, use the rectangle path construction operation. This
operation should be followed by another coordinate and will append a rectangle to the path such that the
previous coordinate and the next coordinates are corners of the rectangle. So, let us add two rectangles to
the picture:

34

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\draw (0,0) rectangle (0.5,0.5);

\ —////// \draw (-0.5,-0.5) rectangle (-1,-1);

\end{tikzpicture}

While this may be nice in other situations, this is not really leading anywhere with Karl’s problem: First,
we would need an awful lot of these rectangles and then there is the border that is not “closed”.

So, Karl is about to resort to simply drawing four vertical and four horizontal lines using the nice \draw
command, when he learns that there is a grid path construction operation.

2.7 Grid Path Construction

The grid path operation adds a grid to the current path. It will add lines making up a grid that fills
the rectangle whose one corner is the current point and whose other corner is the point following the grid
operation. For example, the code \tikz \draw[step=2pt] (0,0) grid (10pt,10pt); produces B Note
how the optional argument for \draw can be used to specify a grid width (there are also xstep and ystep to
define the steppings independently). As Karl will learn soon, there are lots of things that can be influenced
using such options.

For Karl, the following code could be used:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\draw[step=.5cm] (-1.4,-1.4) grid (1.4,1.4);
\end{tikzpicture}

Having another look at the desired picture, Karl notices that it would be nice for the grid to be more
subdued. (His son told him that grids tend to be distracting if they are not subdued.) To subdue the grid,
Karl adds two more options to the \draw command that draws the grid. First, he uses the color gray for the
grid lines. Second, he reduces the line width to very thin. Finally, he swaps the ordering of the commands
so that the grid is drawn first and everything else on top.

\begin{tikzpicture}
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=lcm];
\end{tikzpicture}

2.8 Adding a Touch of Style

Instead of the options gray,very thin Karl could also have said help lines. Styles are predefined sets of
options that can be used to organize how a graphic is drawn. By saying help lines you say “use the style
that I (or someone else) has set for drawing help lines”. If Karl decides, at some later point, that grids should
be drawn, say, using the color blue!50 instead of gray, he could provide the following option somewhere:

help lines/.style={color=blue!50,very thin}

The effect of this “style setter” is that in the current scope or environment the help lines option has
the same effect as color=blue!50,very thin.

35

Using styles makes your graphics code more flexible. You can change the way things look easily in a
consistent manner. Normally, styles are defined at the beginning of a picture. However, you may sometimes
wish to define a style globally, so that all pictures of your document can use this style. Then you can easily
change the way all graphics look by changing this one style. In this situation you can use the \tikzset
command at the beginning of the document as in

\tikzset{help lines/.style=very thin}

To build a hierarchy of styles you can have one style use another. So in order to define a style Karl's grid
that is based on the grid style Karl could say

\tikzset{Karl's grid/.style={help lines,color=blue!/50}}
\draw[Karl's grid] (0,0) grid (5,5);

Styles are made even more powerful by parametrization. This means that, like other options, styles can
also be used with a parameter. For instance, Karl could parameterize his grid so that, by default, it is blue,
but he could also use another color.

\begin{tikzpicture}
[Karl's grid/.style ={help lines,color=#1/50},
Karl's grid/.default=blue]

\draw[Karl's grid] (0,0) grid (1.5,2);
\draw[Karl's grid=red] (2,0) grid (3.5,2);
\end{tikzpicture}

In this example, the definition of the style Karl's grid is given as an optional argument to the
{tikzpicture} environment. Additional styles for other elements would follow after a comma. With many
styles in effect, the optional argument of the environment may easily happen to be longer than the actual
contents.

2.9 Drawing Options

Karl wonders what other options there are that influence how a path is drawn. He saw already that the
color=(color) option can be used to set the line’s color. The option draw=(color) does nearly the same, only
it sets the color for the lines only and a different color can be used for filling (Karl will need this when he
fills the arc for the angle).

He saw that the style very thin yields very thin lines. Karl is not really surprised by this and neither is
he surprised to learn that thin yields thin lines, thick yields thick lines, very thick yields very thick lines,
ultra thick yields really, really thick lines and ultra thin yields lines that are so thin that low-resolution
printers and displays will have trouble showing them. He wonders what gives lines of “normal” thickness.
It turns out that thin is the correct choice, since it gives the same thickness as TEX’s \hrule command.
Nevertheless, Karl would like to know whether there is anything “in the middle” between thin and thick.
There is: semithick.

Another useful thing one can do with lines is to dash or dot them. For this, the two styles dashed and
dotted can be used, yielding - - - - and . Both options also exist in a loose and a dense version, called
loosely dashed, densely dashed, loosely dotted, and densely dotted. If he really, really needs to,
Karl can also define much more complex dashing patterns with the dash pattern option, but his son insists
that dashing is to be used with utmost care and mostly distracts. Karl’s son claims that complicated dashing
patterns are evil. Karl’s students do not care about dashing patterns.

2.10 Arc Path Construction

Our next obstacle is to draw the arc for the angle. For this, the arc path construction operation is useful,
which draws part of a circle or ellipse. This arc operation is followed by options in brackets that specify
the arc. An example would be arc[start angle=10, end angle=80, radius=10pt], which means exactly
what it says. Karl obviously needs an arc from 0° to 30°. The radius should be something relatively small,
perhaps around one third of the circle’s radius. When one uses the arc path construction operation, the
specified arc will be added with its starting point at the current position. So, we first have to “get there”.

36

\begin{tikzpicture}

\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\ \draw (0,0) circle [radius=1cm];

\end{tikzpicture}

\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\draw (3mm,Omm) arc [start angle=0, end angle=30, radius=3mm] ;

Karl thinks this is really a bit small and he cannot continue unless he learns how to do scaling. For this,
he can add the [scale=3] option. He could add this option to each \draw command, but that would be
awkward. Instead, he adds it to the whole environment, which causes this option to apply to everything

within.

\begin{tikzpicture}[scale=3]
\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=1cm];
\draw (3mm,0mm) arc [start angle=0, end angle=30, radius=3mm];
\end{tikzpicture}

As for circles, you can specify “two” radii in order to get an elliptical arc.
\tikz \draw (0,0)

arc [start angle=0, end angle=315,
x radius=1.75cm, y radius=1Icm];

2.11 Clipping a Path

In order to save space in this manual, it would be nice to clip Karl’s graphics a bit so that we can focus
on the “interesting” parts. Clipping is pretty easy in TikZ. You can use the \clip command to clip all
subsequent drawing. It works like \draw, only it does not draw anything, but uses the given path to clip

everything subsequently.

37

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];
\ \draw (3mm,0mm) arc [start angle=0, end angle=30, radius=3mm] ;
\end{tikzpicture}

You can also do both at the same time: Draw and clip a path. For this, use the \draw command and add
the clip option. (This is not the whole picture: You can also use the \clip command and add the draw
option. Well, that is also not the whole picture: In reality, \draw is just a shorthand for \path[draw] and
\clip is a shorthand for \path[clip] and you could also say \path[draw,clipl.) Here is an example:

\begin{tikzpicture}[scale=3]

\clip[draw] (0.5,0.5) circle (.6cm);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=1Icm];

\draw (3mm,Omm) arc [start angle=0, end angle=30, radius=3mm] ;
\end{tikzpicture}

2.12 Paral;ol/aénd Sine Path Construction

Althqugh Karl dees not need them for his picture, he is pleased to learn that there are parabola and sin and
ath opetations for adding parabolas and sine and cosine curves to the current path. For the parabola

operation, the current point will lie on the parabola as well as the point given after the parabola operation.
Consider the following example:

\tikz \draw (0,0) rectangle (1,1) (0,0) parabola (1,1);

It is also possible to place the bend somewhere else:

/\ \tikz \draw[x=1pt,y=1pt] (0,0) parabola bend (4,16) (6,12);

The operations sin and cos add a sine or cosine curve in the interval [0,7/2] such that the previous
current point is at the start of the curve and the curve ends at the given end point. Here are two examples:

A sine ~ curve. A sine \tikz \draw[x=Iez,y=Iez] (0,0) sin (1.57,1); curve.

M \tikz \draw[x=1.57ez,y=1lex] (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0)
(0,1) cos (1,0) sin (2,-1) cos (3,0) sin (4,1);

2.13 Filling and Drawing

Returning to the picture, Karl now wants the angle to be “filled” with a very light green. For this he uses
\fill instead of \draw. Here is what Karl does:

38

\begin{tikzpicture}[scale=3]

\clip (-0.1,-0.2) rectangle (1.1,0.75);

\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];

\fill[green!20!white] (0,0) -- (3mm,Omm)

arc [start angle=0, end angle=30, radius=3mm] -- (0,0);

\end{tikzpicture}

The color green!20!white means 20% green and 80% white mixed together. Such color expression are
possible since TikZ uses Uwe Kern’s xcolor package, see the documentation of that package for details on
color expressions.

What would have happened, if Karl had not “closed” the path using --(0,0) at the end? In this case,
the path is closed automatically, so this could have been omitted. Indeed, it would even have been better to
write the following, instead:

\fill[green!20!white] (0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;

The --cycle causes the current path to be closed (actually the current part of the current path) by
smoothly joining the first and last point. To appreciate the difference, consider the following example:

\begin{tikzpicture}[line width=5pt]
\draw (0,0) -- (1,0) -- (1,1) -- (0,0);
\draw (2,0) -- (3,0) -- (3,1) -- cycle;
\useasboundingbox (0,1.5); 7 make bounding box higher
\end{tikzpicture}

You can also fill and draw a path at the same time using the \filldraw command. This will first draw
the path, then fill it. This may not seem too useful, but you can specify different colors to be used for filling
and for stroking. These are specified as optional arguments like this:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=1cm];

\filldraw[fill=green!/20!white, draw=green!/50!black] (0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;
\end{tikzpicture}

2.14 Shading

Karl briefly considers the possibility of making the angle “more fancy” by shading it. Instead of filling
the area with a uniform color, a smooth transition between different colors is used. For this, \shade and
\shadedraw, for shading and drawing at the same time, can be used:

] y N \tikz \shade (0,0) rectangle (2,1) (3,0.5) circle (.5cm);

The default shading is a smooth transition from gray to white. To specify different colors, you can use
options:

we B B30

39

\begin{tikzpicture} [rounded corners,ultra thick]
\shade [top color=yellow,bottom color=black] (0,0) rectangle +(2,1);
\shade[left color=yellow,right color=black] (3,0) rectangle +(2,1);
\shadedraw[inner color=yellow,outer color=black,draw=yellow] (6,0) rectangle +(2,1);
\shade [ball color=green] (9,.5) circle (.5cm);
\end{tikzpicture}

For Karl, the following might be appropriate:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
‘ \shadedraw[left color=gray,right color=green, draw=green!/50!black]
(0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;
\end{tikzpicture}

However, he wisely decides that shadings usually only distract without adding anything to the picture.

2.15 Specifying Coordinates

Karl now wants to add the sine and cosine lines. He knows already that he can use the color= option to set
the lines’ colors. So, what is the best way to specify the coordinates?

There are different ways of specifying coordinates. The easiest way is to say something like (10pt,2cm).
This means 10pt in z-direction and 2cm in y-directions. Alternatively, you can also leave out the units as in
(1,2), which means “one times the current z-vector plus twice the current y-vector”. These vectors default
to lem in the z-direction and lem in the y-direction, respectively.

In order to specify points in polar coordinates, use the notation (30:1cm), which means lcm in direction
30 degree. This is obviously quite useful to “get to the point (cos 30°,sin30°) on the circle”.

You can add a single + sign in front of a coordinate or two of them as in +(0cm,1cm) or ++(2cm,Ocm).
Such coordinates are interpreted differently: The first form means “lcm upwards from the previous specified
position” and the second means “2cm to the right of the previous specified position, making this the new
specified position”. For example, we can draw the sine line as follows:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,Omm)

arc [start angle=0, end angle=30, radius=3mm] -- cycle;
\draw[red,very thick] (30:1cm) -- +(0,-0.5);
\end{tikzpicture}

Karl used the fact sin 30° = 1/2. However, he very much doubts that his students know this, so it would
be nice to have a way of specifying “the point straight down from (30:1cm) that lies on the z-axis”. This
is, indeed, possible using a special syntax: Karl can write (30:1cm |- 0,0). In general, the meaning of
({p) 1= (g)) is “the intersection of a vertical line through p and a horizontal line through ¢”.

Next, let us draw the cosine line. One way would be to say (30:1cm |- 0,0) -- (0,0). Another way
is the following: we “continue” from where the sine ends:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=1cm];
/////\ \filldraw[fill=green/20,draw=green!50!/black] (0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;

\draw[red,very thick] (30:1cm) -- +(0,-0.5);
\draw [blue,very thick] (30:1cm) ++(0,-0.5) -- (0,0);
\end{tikzpicture}

Note that there is no -- between (30:1cm) and ++(0,-0.5). In detail, this path is interpreted as follows:
“First, the (30:1cm) tells me to move my pen to (cos30°,1/2). Next, there comes another coordinate

40

specification, so I move my pen there without drawing anything. This new point is half a unit down from
the last position, thus it is at (cos30°,0). Finally, I move the pen to the origin, but this time drawing
something (because of the --).

To appreciate the difference between + and ++ consider the following example:

\begin{tikzpicture}
\def\rectanglepath{-- ++(lcm,0cm) -- ++(Ocm,lcm) =-- ++(-1lcm,0cm) -- cycle}
\draw (0,0) \rectanglepath;
\draw (1.5,0) \rectanglepath;

\end{tikzpicture}

By comparison, when using a single +, the coordinates are different:

\begin{tikzpicture}
\def\rectanglepath{-- +(lcm,0cm) -- +(icm,icm) -- +(Ocm,lcm) -- cycle}
\draw (0,0) \rectanglepath;
\draw (1.5,0) \rectanglepath;

\end{tikzpicture}

Naturally, all of this could have been written more clearly and more economically like this (either with
a single or a double +):

\tikz \draw (0,0) rectangle +(1,1) (1.5,0) rectangle +(1,1);

2.16 Intersecting Paths

Karl is left with the line for tan o, which seems difficult to specify using transformations and polar coordi-
nates. The first — and easiest — thing he can do is so simply use the coordinate (1,{tan(30)3}) since TikZ’s
math engine knows how to compute things like tan(30). Note the added braces since, otherwise, TikZ’s
parser would think that the first closing parenthesis ends the coordinate (in general, you need to add braces
around components of coordinates when these components contain parentheses).

Karl can, however, also use a more elaborate, but also more “geometric” way of computing the length
of the orange line: He can specify intersections of paths as coordinates. The line for tan « starts at (1,0)
and goes upward to a point that is at the intersection of a line going “up” and a line going from the origin
through (30:1cm). Such computations are made available by the intersections library.

What Karl must do is to create two “invisible” paths that intersect at the position of interest. Creating
paths that are not otherwise seen can be done using the \path command without any options like draw or
£il1l. Then, Karl can add the name path option to the path for later reference. Once the paths have been
constructed, Karl can use the name intersections to assign names to the coordinate for later reference.

\path [name path=upward line] (1,0) -- (1,1);
\path [name path=sloped line] (0,0) -- (30:1.5cm); % a bit longer, so that there is an intersection

% (add “\usetikzlibrary{intersections}' after loading tikz in the preamble)
\draw [name intersections={of=upward line and sloped line, by=z}]
[very thick,orange] (1,0) -- (x);

2.17 Adding Arrow Tips

Karl now wants to add the little arrow tips at the end of the axes. He has noticed that in many plots, even in
scientific journals, these arrow tips seem to be missing, presumably because the generating programs cannot
produce them. Karl thinks arrow tips belong at the end of axes. His son agrees. His students do not care
about arrow tips.

It turns out that adding arrow tips is pretty easy: Karl adds the option -> to the drawing commands for
the axes:

41

\usetikzlibrary {intersections}

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,1.51);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw[->] (-1.5,0) -- (1.5,0);
\draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle [radius=Icm];
\filldraw[fill=green/20,draw=green!50!/black] (0,0) -- (3mm,Omm)

arc [start angle=0, end angle=30, radius=3mm] -- cycle;
[— \draw[red,very thick] (30:1cm) -- +(0,-0.5);
\draw[blue,very thick] (30:1cm) ++(0,-0.5) -- (0,0);
/////\ \path [name path=upward line] (1,0) -- (1,1);
\path [name path=sloped linel (0,0) —-- (30:1.5cm);
A \draw [name intersections={of=upward line and sloped line, by=z}]
[very thick,orange] (1,0) -- (x);
\end{tikzpicture}

If Karl had used the option <- instead of ->, arrow tips would have been put at the beginning of the
path. The option <-> puts arrow tips at both ends of the path.

There are certain restrictions to the kind of paths to which arrow tips can be added. As a rule of thumb,
you can add arrow tips only to a single open “line”. For example, you cannot add tips to, say, a rectangle
or a circle. However, you can add arrow tips to curved paths and to paths that have several segments, as in
the following examples:

¢/"y z//N\\V//Z \begin{tikzpicture}

\draw [<->] (0,0) arc [start angle=180, end angle=30, radius=10pt];
\draw [<->] (1,0) -- (1.5cm,10pt) -- (2cm,Opt) -- (2.5cm,10pt);
\end{tikzpicture}

Karl has a more detailed look at the arrow that TikZ puts at the end. It looks like this when he zooms
it: =. The shape seems vaguely familiar and, indeed, this is exactly the end of TEX’s standard arrow used
in something like f: A — B.

Karl likes the arrow, especially since it is not “as thick” as the arrows offered by many other packages.
However, he expects that, sometimes, he might need to use some other kinds of arrow. To do so, Karl can
say >=(kind of end arrow tip), where (kind of end arrow tip) is a special arrow tip specification. For example,
if Karl says >=Stealth, then he tells TikZ that he would like “stealth-fighter-like” arrow tips:

r\ A/ \usetikzlibrary {arrows.meta}
\begin{tikzpicture} [>=Stealth]
\draw [->] (0,0) arc [start angle=180, end angle=30, radius=10pt];
\draw [<<-,very thick] (1,0) -- (1.5cm,10pt) -- (2cm,Opt) -- (2.5cm,10pt);
\end{tikzpicture}

Karl wonders whether such a military name for the arrow type is really necessary. He is not really
mollified when his son tells him that Microsoft’s PowerPoint uses the same name. He decides to have his
students discuss this at some point.

In addition to Stealth there are several other predefined kinds of arrow tips Karl can choose from, see
Section 105. Furthermore, he can define arrows types himself, if he needs new ones.

2.18 Scoping

Karl saw already that there are numerous graphic options that affect how paths are rendered. Often, he
would like to apply certain options to a whole set of graphic commands. For example, Karl might wish to
draw three paths using a thick pen, but would like everything else to be drawn “normally”.

If Karl wishes to set a certain graphic option for the whole picture, he can simply pass this option to
the \tikz command or to the {tikzpicture} environment (Gerda would pass the options to \tikzpicture
and Hans passes them to \starttikzpicture). However, if Karl wants to apply graphic options to a local
group, he put these commands inside a {scope} environment (Gerda uses \scope and \endscope, Hans
uses \startscope and \stopscope). This environment takes graphic options as an optional argument and
these options apply to everything inside the scope, but not to anything outside.

Here is an example:

42

\begin{tikzpicture}[ultra thick]
\draw (0,0) -- (0,1);
\begin{scope} [thin]

\draw (1,0) -- (1,1);
\draw (2,0) -- (2,1);
\end{scope}
\draw (3,0) -- (3,1);
\end{tikzpicture}

Scoping has another interesting effect: Any changes to the clipping area are local to the scope. Thus,
if you say \clip somewhere inside a scope, the effect of the \clip command ends at the end of the scope.
This is useful since there is no other way of “enlarging” the clipping area.

Karl has also already seen that giving options to commands like \draw apply only to that command.
It turns out that the situation is slightly more complex. First, options to a command like \draw are
not really options to the command, but they are “path options” and can be given anywhere on the
path. So, instead of \draw[thin] (0,0) -- (1,0); one can also write \draw (0,0) [thin] -- (1,0);
or \draw (0,0) -- (1,0) [thin];; all of these have the same effect. This might seem strange since in the
last case, it would appear that the thin should take effect only “after” the line from (0,0) to (1,0) has been
drawn. However, most graphic options only apply to the whole path. Indeed, if you say both thin and
thick on the same path, the last option given will “win”.

When reading the above, Karl notices that only “most” graphic options apply to the whole path. Indeed,
all transformation options do not apply to the whole path, but only to “everything following them on the
path”. We will have a more detailed look at this in a moment. Nevertheless, all options given during a path
construction apply only to this path.

2.19 Transformations

When you specify a coordinate like (1cm,1cm), where is that coordinate placed on the page? To determine
the position, TikZ, TEX, and PDF or PostScript all apply certain transformations to the given coordinate in
order to determine the final position on the page.

TikZ provides numerous options that allow you to transform coordinates in TikZ’s private coordinate
system. For example, the xshift option allows you to shift all subsequent points by a certain amount:

“ \tikz \draw (0,0) -- (0,0.5) [xshift=2pt] (0,0) -- (0,0.5);

It is important to note that you can change transformation “in the middle of a path”, a feature that is
not supported by PDF or PostScript. The reason is that TikZ keeps track of its own transformation matrix.
Here is a more complicated example:

\begin{tikzpicture}[even odd rule,rounded corners=2pt,x=10pt,y=10pt]
\filldraw[fill=yellow!80!black] (0,0) rectangle (1,1)
[xshift=5pt,yshift=5pt] (0,0) rectangle (1,1)
[rotate=30] (-1,-1) rectangle (2,2);
\end{tikzpicture}

The most useful transformations are xshift and yshift for shifting, shift for shifting to a given point
as in shift={(1,0)} or shift={+(0,0)} (the braces are necessary so that TEX does not mistake the comma
for separating options), rotate for rotating by a certain angle (there is also a rotate around for rotating
around a given point), scale for scaling by a certain factor, xscale and yscale for scaling only in the -
or y-direction (xscale=-1 is a flip), and xslant and yslant for slanting. If these transformation and those
that T have not mentioned are not sufficient, the cm option allows you to apply an arbitrary transformation
matrix. Karl’s students, by the way, do not know what a transformation matrix is.

2.20 Repeating Things: For-Loops

Karl’s next aim is to add little ticks on the axes at positions —1, —1/2, 1/2, and 1. For this, it would be
nice to use some kind of “loop”, especially since he wishes to do the same thing at each of these positions.
There are different packages for doing this. I¥TEX has its own internal command for this, pstricks comes
along with the powerful \multido command. All of these can be used together with TikZ, so if you are
familiar with them, feel free to use them. TikZ introduces yet another command, called \foreach, which

43

I introduced since I could never remember the syntax of the other packages. \foreach is defined in the
package pgffor and can be used independently of TikZ, but TikZ includes it automatically.
In its basic form, the \foreach command is easy to use:

r=1,x2=2 =3, \foreach \x in {1,2,3} {$x =\x$, }

The general syntax is \foreach (variable) in {(list of values)} (commands). Inside the (commands),
the (variable) will be assigned to the different values. If the (commands) do not start with a brace, everything
up to the next semicolon is used as (commands).

For Karl and the ticks on the axes, he could use the following code:

\begin{tikzpicturel}[scale=3]

\clip (-0.1,-0.2) rectangle (1.1,1.51);

\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\filldraw[fill=green/20,draw=green!50!black] (0,0) -- (3mm,Omm)
arc [start angle=0, end angle=30, radius=3mm] -- cycle;

\draw[->] (-1.5,0) -- (1.5,0);

\draw[->] (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];

\foreach \x in {-1cm,-0.5cm,lcm}
\draw (\x,-1pt) -- (\x,1pt);
\foreach \y in {-1cm,-0.5cm,0.5cm,lcm}
\draw (-1pt,\y) -- (ipt,\y);
\end{tikzpicture}

As a matter of fact, there are many different ways of creating the ticks. For example, Karl could have
put the \draw ...; inside curly braces. He could also have used, say,

\foreach \x in {-1,-0.5,1}
\draw [xshift=\z em] (Opt,-1pt) -- (Opt,ipt);

Karl is curious what would happen in a more complicated situation where there are, say, 20 ticks. It
seems bothersome to explicitly mention all these numbers in the set for \foreach. Indeed, it is possible to
use ... inside the \foreach statement to iterate over a large number of values (which must, however, be
dimensionless real numbers) as in the following example:

OOOOOOOO0OO

\tikz \foreach \x in {1,...,10}
\draw (\x,0) circle (0.4cm);

If you provide two numbers before the ..., the \foreach statement will use their difference for the
stepping:

\tikz \foreach \x in {-1,-0.5,...,1}
\draw (\x cm,-1pt) -- (\x cm,1pt);

We can also nest loops to create interesting effects:

15 | 25|35 | 45 | 55 75 | 85 | 95 | 105|115 | 12,5
14 | 24|34 | 44| 54 74 | 84| 94 | 104|114 | 124
13233314353 73 | 83|93 (103 |11,3] 12,3
12 223242 |52 72 | 82192 |102|11,2] 12,2
1121314151 71 | 81 | 91 10,1 | 11,1 | 12,1

44

\begin{tikzpicture}

\foreach \x in {1,2,...,5,7.,8,...,12}
\foreach \y in {1,...,5}
{

\draw (\x,\y) +(-.5,-.5) rectangle ++(.5,.5);
\draw (\x,\y) node{\x,\y};
}
\end{tikzpicture}

The \foreach statement can do even trickier stuff, but the above gives the idea.

2.21 Adding Text

Karl is, by now, quite satisfied with the picture. However, the most important parts, namely the labels, are
still missing!

TikZ offers an easy-to-use and powerful system for adding text and, more generally, complex shapes to a
picture at specific positions. The basic idea is the following: When TikZ is constructing a path and encounters
the keyword node in the middle of a path, it reads a node specification. The keyword node is typically followed
by some options and then some text between curly braces. This text is put inside a normal TEX box (if the
node specification directly follows a coordinate, which is usually the case, TikZ is able to perform some magic
so that it is even possible to use verbatim text inside the boxes) and then placed at the current position,
that is, at the last specified position (possibly shifted a bit, according to the given options). However, all
nodes are drawn only after the path has been completely drawn/filled/shaded/clipped/whatever.

\begin{tikzpicture}
Text at node 2 \draw (0,0) rectangle (2,2);
\draw (0.5,0.5) node [fill=yellow!/80!black]
///)/ {Text at \verb!mode 1!}
Text at node 1 -- (1.5,1.5) node {Text at \verb!mode 2!'};

\end{tikzpicture}

Obviously, Karl would not only like to place nodes on the last specified position, but also to the left
or the right of these positions. For this, every node object that you put in your picture is equipped with
several anchors. For example, the north anchor is in the middle at the upper end of the shape, the south
anchor is at the bottom and the north east anchor is in the upper right corner. When you give the option
anchor=north, the text will be placed such that this northern anchor will lie on the current position and
the text is, thus, below the current position. Karl uses this to draw the ticks as follows:

\begin{tikzpicture} [scale=3]
\clip (-0.6,-0.2) rectangle (0.6,1.51);
\draw[step=.5cm,help lines] (-1.4,-1.4) grid (1.4,1.4);

\filldraw[fill=green/20,draw=green!50!black] (0,0) -- (3mm,Omm)
1 arc [start angle=0, end angle=30, radius=3mm] -- cycle;
| \draw[->] (-1.5,0) -- (1.5,0); \draw[->] (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=lcm];

\foreach \x in {-1,-0.5,1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\x};
\foreach \y in {-1,-0.5,0.5,1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\y};
\end{tikzpicture}

@
(W3}

This is quite nice, already. Using these anchors, Karl can now add most of the other text elements.
However, Karl thinks that, though “correct”, it is quite counter-intuitive that in order to place something
below a given point, he has to use the north anchor. For this reason, there is an option called below, which
does the same as anchor=north. Similarly, above right does the same as anchor=south west. In addition,
below takes an optional dimension argument. If given, the shape will additionally be shifted downwards by
the given amount. So, below=1pt can be used to put a text label below some point and, additionally shift
it 1pt downwards.

Karl is not quite satisfied with the ticks. He would like to have 1/2 or % shown instead of 0.5, partly to
show off the nice capabilities of TEX and TikZ, partly because for positions like 1/3 or = it is certainly very

45

much preferable to have the “mathematical” tick there instead of just the “numeric” tick. His students, on
the other hand, prefer 0.5 over 1/2 since they are not too fond of fractions in general.

Karl now faces a problem: For the \foreach statement, the position \x should still be given as 0.5 since
TikZ will not know where \frac{1}{2} is supposed to be. On the other hand, the typeset text should really
be \frac{1}{2}. To solve this problem, \foreach offers a special syntax: Instead of having one variable \x,
Karl can specify two (or even more) variables separated by a slash as in \x / \xtext. Then, the elements
in the set over which \foreach iterates must also be of the form (first)/(second). In each iteration, \x will
be set to (first) and \xtext will be set to (second). If no (second) is given, the (first) will be used again.
So, here is the new code for the ticks:

\begin{tikzpicture}[scale=3]
\clip (-0.6,-0.2) rectangle (0.6,1.51);
\draw[step=.5cm,help lines] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green/20,draw=green!50!black] (0,0) -- (3mm,Omm)
1 arc [start angle=0, end angle=30, radius=3mm] -- cycle;
| \draw[->] (-1.5,0) -- (1.5,0); \draw[->] (0,-1.5) -- (0,1.5);

\draw (0,0) circle [radius=Icm];

\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
) \draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\xtext};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\ytextl};
\end{tikzpicture}

=

NI

Karl is quite pleased with the result, but his son points out that this is still not perfectly satisfactory:
The grid and the circle interfere with the numbers and decrease their legibility. Karl is not very concerned
by this (his students do not even notice), but his son insists that there is an easy solution: Karl can add the
[fill=white] option to fill out the background of the text shape with a white color.

The next thing Karl wants to do is to add the labels like sin «. For this, he would like to place a label
“in the middle of the line”. To do so, instead of specifying the label node {$\sin\alpha$} directly after one
of the endpoints of the line (which would place the label at that endpoint), Karl can give the label directly
after the —-, before the coordinate. By default, this places the label in the middle of the line, but the pos=
options can be used to modify this. Also, options like near start and near end can be used to modify this
position:

N[

sin o

St cos o

|
—_
\
Ol

COS (v 1
| .

46

\usetikzlibrary {intersections}

\begin{tikzpicture}[scale=3]
\clip (-2,-0.2) rectangle (2,0.8);
\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green!20,draw=green!50/black] (0,0) -- (3mm,Omm)

arc [start angle=0, end angle=30, radius=3mm] -- cycle;

\draw[->] (-1.5,0) -- (1.5,0) coordinate (x axis);
\draw[->] (0,-1.5) -- (0,1.5) coordinate (y axis);
\draw (0,0) circle [radius=1cm];

\draw [very thick,red]

(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:1lcm |- x axis);
\draw [very thick,blue]

(30:1cm |- x axis) -- nodel[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\path [name path=upward line] (1,0) -- (1,1);
\path [name path=sloped line] (0,0) -- (30:1.5cm);
\draw [name intersections={of=upward line and sloped line, by=t}]

[very thick,orange]l (1,0) -- node [right=Ipt,fill=white]

{$\displaystyle \tan \alpha \color{black}=

\frac{{\color{red}\sin \alpha}}{\color{blue}\cos \alpha}$} (t);

\draw (0,0) -- (t);

\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north,fill=white] {\xtextl};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east,fill=white] {\ytext};
\end{tikzpicture}

You can also position labels on curves and, by adding the sloped option, have them rotated such that
they match the line’s slope. Here is an example:

/meﬂw\
Vety

le

a opg

\begin{tikzpicture}
\draw (0,0) .. controls (6,1) and (9,1)
node [near start,sloped,above] {near start}
node {midway}
node [very near end,sloped,below] {very near end} (12,0);
\end{tikzpicture}

It remains to draw the explanatory text at the right of the picture. The main difficulty here lies in
limiting the width of the text “label”, which is quite long, so that line breaking is used. Fortunately, Karl
can use the option text width=6cm to get the desired effect. So, here is the full code:

47

\begin{tikzpicture}
[scale=3,line cap=round,
% Styles
axes/.style=,
important line/.style={very thick},
information text/.style={rounded corners,fill=red!/10,inner sep=1ez}]

7 Colors
\colorlet{anglecolor}{green!50!black}
\colorlet{sincolor}{red}
\colorlet{tancolor}{orange!80!black}
\colorlet{coscolor}{blue}

% The graphic
\draw[help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4);

\draw (0,0) circle [radius=1cm];

\begin{scope} [axes]
\draw[->] (-1.5,0) -- (1.5,0) node[right] {x} coordinate(x axis);
\draw[->] (0,-1.5) -- (0,1.5) nodel[abovel {y} coordinate(y axis);

\foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1}
\draw [xshift=\z cm] (Opt,1pt) -- (Opt,-1pt) nodel[below,fill=white] {\xtextl};

\foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1}
\draw[yshift=\y em] (1pt,Opt) -- (-1pt,Opt) node[left,fill=white] {\ytextl};
\end{scope}

\filldraw([fill=green!/20,draw=anglecolor] (0,0) -- (3mm,Opt)
arc [start angle=0, end angle=30, radius=3mm] ;
\draw (15:2mm) node[anglecolor] {α};

\draw [important line,sincolor]
(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:1cm |- x axis);

\draw [important line,coscolor]
(30:1cm |- x axis) -- nodel[below=2pt,fill=whitel {$\cos \alpha$} (0,0);

\path [name path=uwpward line] (1,0) -- (1,1);

\path [name path=sloped line] (0,0) -- (30:1.5cm);

\draw [name intersections={of=upward line and sloped line, by=t}]
[very thick,orange] (1,0) -- node [right=Ipt,fill=white]
{$\displaystyle \tan \alpha \color{black}=

\frac{{\color{red}\sin \alphal}}{\color{blue}\cos \alpha}$} (t);

\draw (0,0) -- (t);

\draw [xshift=1.85cm]

node [right,text width=6cm,information text]

{
The {\color{anglecolor} angle α} is $30"\circ$ in the
example ($\pi/6$ in radians). The {\color{sincolor}sine of

α}, which is the height of the red line, is

\[
{\color{sincolor} \sin \alpha} = 1/2.
\]
By the Theorem of Pythagoras ...

ks
\end{tikzpicture}

2.22 Pics: The Angle Revisited

Karl expects that the code of certain parts of the picture he created might be so useful that he might wish
to reuse them in the future. A natural thing to do is to create TEX macros that store the code he wishes to
reuse. However, TikZ offers another way that is integrated directly into its parser: pics!

A “pic” is “not quite a full picture”, hence the short name. The idea is that a pic is simply some code
that you can add to a picture at different places using the pic command whose syntax is almost identical to
the node command. The main difference is that instead of specifying some text in curly braces that should
be shown, you specify the name of a predefined picture that should be shown.

48

Defining new pics is easy enough, see Section 18, but right now we just want to use one such predefined
pic: the angle pic. As the name suggests, it is a small drawing of an angle consisting of a little wedge and
an arc together with some text (Karl needs to load the angles library and the quotes for the following
examples). What makes this pic useful is the fact that the size of the wedge will be computed automatically.

The angle pic draws an angle between the two lines BA and BC, where A, B, and C are three coordinates.
In our case, B is the origin, A is somewhere on the z-axis and C' is somewhere on a line at 30°.

\usetikzlibrary {angles,quotes}
\begin{tikzpicture}[scale=3]
\coordinate (A) at (1,0);
\coordinate (B) at (0,0);
(€] \coordinate (C) at (30:1cm);

\draw (A) -- (B) -- (C)
pic [draw=green!/50!black, fill=green!/20, angle radius=9mm,
"α"] {angle = A--B--C};
\end{tikzpicture}

Let us see, what is happening here. First we have specified three coordinates using the \coordinate
command. It allows us to name a specific coordinate in the picture. Then comes something that starts as a
normal \draw, but then comes the pic command. This command gets lots of options and, in curly braces,
comes the most important point: We specify that we want to add an angle pic and this angle should be
between the points we named A, B, and C (we could use other names). Note that the text that we want to
be shown in the pic is specified in quotes inside the options of the pic, not inside the curly braces.

To learn more about pics, please see Section 18.

49

3 Tutorial: A Petri-Net for Hagen

In this second tutorial we explore the node mechanism of TikZ and PGF.

Hagen must give a talk tomorrow about his favorite formalism for distributed systems: Petri nets!
Hagen used to give his talks using a blackboard and everyone seemed to be perfectly content with this.
Unfortunately, his audience has been spoiled recently with fancy projector-based presentations and there
seems to be a certain amount of peer pressure that his Petri nets should also be drawn using a graphic
program. One of the professors at his institute recommends TikZ for this and Hagen decides to give it a try.

3.1 Problem Statement

For his talk, Hagen wishes to create a graphic that demonstrates how a net with place capacities can be
simulated by a net without capacities. The graphic should look like this, ideally:

replacement of

EQ'
the capacity
‘6< by two places
ANNNNNNNNNNND

j

3.2 Setting up the Environment

For the picture Hagen will need to load the TikZ package as did Karl in the previous tutorial. However,
Hagen will also need to load some additional library packages that Karl did not need. These library packages
contain additional definitions like extra arrow tips that are typically not needed in a picture and that need
to be loaded explicitly.

Hagen will need to load several libraries: The arrows.meta library for the special arrow tip used in
the graphic, the decorations.pathmorphing library for the “snaking line” in the middle, the backgrounds
library for the two rectangular areas that are behind the two main parts of the picture, the fit library to
easily compute the sizes of these rectangles, and the positioning library for placing nodes relative to other
nodes.

3.2.1 Setting up the Environment in IATEX
When using BKTEX use:

\documentclass{article} / say

\usepackage{tikz}
\usetikzlibrary{arrows.meta,decorations.pathmorphing,backgrounds,positioning,fit,petri}

\begin{document}
\begin{tikzpicture}
\draw (0,0) -- (1,1);

\end{tikzpicture}
\end{document}

3.2.2 Setting up the Environment in Plain TEX

When using plain TEX use:

50

A% Plain TeX file
\input tikz.tex
\usetikzlibrary{arrows.meta,decorations.pathmorphing,backgrounds,positioning,fit,petri}
\baselineskip=12pt
\hsize=6.3truein
\vsize=8.7truein
\tikzpicture
\draw (0,0) -- (1,1);
\endtikzpicture
\bye

3.2.3 Setting up the Environment in ConTgXt
When using ConTEXt, use:

%% ConTeXt file
\usemodule [tikz]
\usetikzlibrary[arrows.meta,decorations.pathmorphing,backgrounds,positioning,fit,petri]

\starttext
\starttikzpicture
\draw (0,0) -- (1,1);
\stoptikzpicture
\stoptext

3.3 Introduction to Nodes

In principle, we already know how to create the graphics that Hagen desires (except perhaps for the snaked
line, we will come to that): We start with big light gray rectangle and then add lots of circles and small
rectangle, plus some arrows.

However, this approach has numerous disadvantages: First, it is hard to change anything at a later stage.
For example, if we decide to add more places to the Petri nets (the circles are called places in Petri net
theory), all of the coordinates change and we need to recalculate everything. Second, it is hard to read the
code for the Petri net as it is just a long and complicated list of coordinates and drawing commands — the
underlying structure of the Petri net is lost.

Fortunately, TikZ offers a powerful mechanism for avoiding the above problems: nodes. We already came
across nodes in the previous tutorial, where we used them to add labels to Karl’s graphic. In the present
tutorial we will see that nodes are much more powerful.

A node is a small part of a picture. When a node is created, you provide a position where the node
should be drawn and a shape. A node of shape circle will be drawn as a circle, a node of shape rectangle
as a rectangle, and so on. A node may also contain some text, which is why Karl used nodes to show text.
Finally, a node can get a name for later reference.

In Hagen'’s picture we will use nodes for the places and for the transitions of the Petri net (the places are
the circles, the transitions are the rectangles). Let us start with the upper half of the left Petri net. In this
upper half we have three places and two transitions. Instead of drawing three circles and two rectangles, we
use three nodes of shape circle and two nodes of shape rectangle.

O \begin{tikzpicture}
\path (0,2) node [shape=circle,draw] {}
(0,1) node [shape=circle,draw] {}
O () O (0,0) node [shape=circle,draw] {}
(1,1) node [shape=rectangle,draw] {}
(-1,1) node [shape=rectangle,draw] {};
() \end{tikzpicture}

Hagen notes that this does not quite look like the final picture, but it seems like a good first step.

Let us have a more detailed look at the code. The whole picture consists of a single path. Ignoring the
node operations, there is not much going on in this path: It is just a sequence of coordinates with nothing
“happening” between them. Indeed, even if something were to happen like a line-to or a curve-to, the \path
command would not “do” anything with the resulting path. So, all the magic must be in the node commands.

In the previous tutorial we learned that a node will add a piece of text at the last coordinate. Thus,
each of the five nodes is added at a different position. In the above code, this text is empty (because of the

51

empty {}). So, why do we see anything at all? The answer is the draw option for the node operation: It
causes the “shape around the text” to be drawn.

So, the code (0,2) node [shape=circle,draw] {} means the following: “In the main path, add a
move-to to the coordinate (0,2). Then, temporarily suspend the construction of the main path while the
node is built. This node will be a circle around an empty text. This circle is to be drawn, but not filled or
otherwise used. Once this whole node is constructed, it is saved until after the main path is finished. Then,
it is drawn.” The following (0,1) node [shape=circle,draw] {} then has the following effect: “Continue
the main path with a move-to to (0,1). Then construct a node at this position also. This node is also
shown after the main path is finished.” And so on.

3.4 Placing Nodes Using the At Syntax

Hagen now understands how the node operation adds nodes to the path, but it seems a bit silly to create a
path using the \path operation, consisting of numerous superfluous move-to operations, only to place nodes.
He is pleased to learn that there are ways to add nodes in a more sensible manner.

First, the node operation allows one to add at ({coordinate)) in order to directly specify where the node
should be placed, sidestepping the rule that nodes are placed on the last coordinate. Hagen can then write
the following:

\begin{tikzpicture}
\path node at (0,2)
node at

O

[shape=circle,draw] {}

O

O O

(0,1)
node at (0,0)
node at (1,1)

node at (-1,1)

[shape=circle,draw] {}
[shape=circle,draw] {}
[shape=rectangle,draw] {}
[shape=rectangle,draw] {};

\end{tikzpicture}

O

Now Hagen is still left with a single empty path, but at least the path no longer contains strange move-
to’s. It turns out that this can be improved further: The \node command is an abbreviation for \path node,
which allows Hagen to write:

O \begin{tikzpicture}
\node at (0,2) [circle,draw] {};
\node at (0,1) [circle,draw] {};
\node at (0,0) [circle,draw] {};
\node at (1,1) [rectangle,draw] {J};
\node at (-1,1) [rectangle,draw] {};
\end{tikzpicture}

U U

O
O

Hagen likes this syntax much better than the previous one. Note that Hagen has also omitted the shape=
since, like color=, TikZ allows you to omit the shape= if there is no confusion.

3.5 Using Styles

Feeling adventurous, Hagen tries to make the nodes look nicer. In the final picture, the circles and rectangle
should be filled with different colors, resulting in the following code:

@)
@)
@)

\begin{tikzpicture} [thick]
\node at (0,2) [circle,draw=blue!50,fill=blue!20] {};
\node at (0,1) [circle,draw=blue!50,fill=blue!/20] {};
\node at (0,0) [circle,draw=blue!50,fill=blue!/20] {};
\node at (1,1) [rectangle,draw=black!/50,fill=black!20] {};
\node at (-1,1) [rectangle,draw=black!/50,fill=black!/20] {};
\end{tikzpicture}

O O

While this looks nicer in the picture, the code starts to get a bit ugly. Ideally, we would like our code
to transport the message “there are three places and two transitions” and not so much which filling colors
should be used.

To solve this problem, Hagen uses styles. He defines a style for places and another style for transitions:

52

(:) \begin{tikzpicture}
[place/.style={circle,draw=blue!50,fill=blue!20,thick},
transition/.style={rectangle,draw=black!/50,fill=black/20,thick}]

O (:) O \node at (0,2) [place] {};
\node at (0,1) [placel {};
\node at (0,0) [place] {};

(:) \node at (1,1) [transition] {};

\node at (-1,1) [transition] {};
\end{tikzpicture}

3.6 Node Size

Before Hagen starts naming and connecting the nodes, let us first make sure that the nodes get their final
appearance. They are still too small. Indeed, Hagen wonders why they have any size at all, after all, the
text is empty. The reason is that TikZ automatically adds some space around the text. The amount is set
using the option inner sep. So, to increase the size of the nodes, Hagen could write:

\begin{tikzpicture}

O [inner sep=2mm,
place/.style={circle,draw=blue/50,fill=blue/20,thick},
transition/.style={rectangle,draw=black!50,fill=black/20,thick}]

[:] (::) [:] \node at (0,2) [place] {J};
\node at (0,1) [place]l {};

\node at (0,0) [place] {};
(::) \node at (1,1) [transition] {};
\node at (-1,1) [transition] {};
\end{tikzpicture}

However, this is not really the best way to achieve the desired effect. It is much better to use the
minimum size option instead. This option allows Hagen to specify a minimum size that the node should
have. If the node actually needs to be bigger because of a longer text, it will be larger, but if the text
is empty, then the node will have minimum size. This option is also useful to ensure that several nodes
containing different amounts of text have the same size. The options minimum height and minimum width
allow you to specify the minimum height and width independently.

So, what Hagen needs to do is to provide minimum size for the nodes. To be on the safe side, he also
sets inner sep=0pt. This ensures that the nodes will really have size minimum size and not, for very small
minimum sizes, the minimal size necessary to encompass the automatically added space.

\begin{tikzpicture}
(::) [place/.style={circle,draw=blue!50,fill=blue!20,thick,
inner sep=Opt,minimum size=6mm}t,
transition/.style={rectangle,draw=black!50,fill=black!20,thick,
[:] <::> [:] inner sep=Opt,minimum size=/mm}]
\node at (0,2) [placel {};
\node at (0,1) [place] {};
<::> \node at (0,0) [place] {};
\node at (1,1) [transition] {};

\node at (-1,1) [transition] {};
\end{tikzpicture}

3.7 Naming Nodes

Hagen’s next aim is to connect the nodes using arrows. This seems like a tricky business since the arrows
should not start in the middle of the nodes, but somewhere on the border and Hagen would very much like
to avoid computing these positions by hand.

Fortunately, PGF will perform all the necessary calculations for him. However, he first has to assign
names to the nodes so that he can reference them later on.

There are two ways to name a node. The first is to use the name= option. The second method is to write
the desired name in parentheses after the node operation. Hagen thinks that this second method seems
strange, but he will soon change his opinion.

53

% ... set up styles
Q \begin{tikzpicture}
\node (waiting 1) at
[place]l {3};

(0,2) [placel {};
\node (critical 1) at (0,1)

I:' O I:' \node (semaphore) at (0,0) [placel {};
(1,1)
(-1,1)

\node (leave critical) at [transition] {};

\node (enter critical) at [transition] {};
\end{tikzpicture}

Hagen is pleased to note that the names help in understanding the code. Names for nodes can be
pretty arbitrary, but they should not contain commas, periods, parentheses, colons, and some other special
characters. However, they can contain underscores and hyphens.

The syntax for the node operation is quite liberal with respect to the order in which node names, the at
specifier, and the options must come. Indeed, you can even have multiple option blocks between the node
and the text in curly braces, they accumulate. You can rearrange them arbitrarily and perhaps the following
might be preferable:

\begin{tikzpicture}
Q \node [place] (waiting 1) at (0,2) {};
\node [place] (critical 1) at (0,1) {};
\node [place] (semaphore) at (0,0) {};
I:' O I:' \node [transition] (leave critical) at (1,1) {};
\node [transition] (enter critical) at (-1,1) {};

Q \end{tikzpicture}

3.8 Placing Nodes Using Relative Placement

Although Hagen still wishes to connect the nodes, he first wishes to address another problem again: The
placement of the nodes. Although he likes the at syntax, in this particular case he would prefer placing the
nodes “relative to each other”. So, Hagen would like to say that the critical 1 node should be below the
waiting 1 node, wherever the waiting 1 node might be. There are different ways of achieving this, but
the nicest one in Hagen’s case is the below option:

\usetikzlibrary {positioning}
Q \begin{tikzpicture}
\node [place] (waiting) {3;
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {};
|:| O |:| \node [transition] (leave critical) [right=of criticall {3};
\node [transition] (enter critical) [left=of criticall {I};
\end{tikzpicture}

@)

With the positioning library loaded, when an option like below is followed by of, then the position
of the node is shifted in such a manner that it is placed at the distance node distance in the specified
direction of the given direction. The node distance is either the distance between the centers of the nodes
(when the on grid option is set to true) or the distance between the borders (when the on grid option is
set to false, which is the default).

Even though the above code has the same effect as the earlier code, Hagen can pass it to his colleagues
who will be able to just read and understand it, perhaps without even having to see the picture.

3.9 Adding Labels Next to Nodes

Before we have a look at how Hagen can connect the nodes, let us add the capacity “s < 3” to the bottom
node. For this, two approaches are possible:

1. Hagen can just add a new node above the north anchor of the semaphore node.

54

\usetikzlibrary {positioning}
O \begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waitingl {};
\node [place] (semaphore) [below=of criticall {};

|:| O |:| \node [transition] (leave critical) [right=of criticall {};

\node [transition] (enter critical) [left=of criticall {I};

\node [red,abovel at (semaphore.north) {$s\le 3$};

s<3 \end{tikzpicture}

O

This is a general approach that will “always work”.

. Hagen can use the special 1label option. This option is given to a node and it causes another node
to be added next to the node where the option is given. Here is the idea: When we construct the
semaphore node, we wish to indicate that we want another node with the capacity above it. For this,
we use the option label=above:$s\le 3$. This option is interpreted as follows: We want a node
above the semaphore node and this node should read “s < 3”. Instead of above we could also use
things like below left before the colon or a number like 60.

\usetikzlibrary {positioning}

Q \begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of critical,

|:| Q |:| label=above:$s\le38] {};

\node [transition] (leave critical) [right=of criticall {};
\node [transition] (enter critical) [left=of criticall {I};

s<3 \end{tikzpicture}

O

It is also possible to give multiple label options, this causes multiple labels to be drawn.

60° \tikz
\node [circle,draw,label=60:$60"\circ$,label=below:$-90 \circ$]l {my circlel};

-90°

Hagen is not fully satisfied with the label option since the label is not red. To achieve this, he has
two options: First, he can redefine the every label style. Second, he can add options to the label’s
node. These options are given following the label=, so he would write label=[red]above:$s\1le3$.
However, this does not quite work since TEX thinks that the] closes the whole option list of the
semaphore node. So, Hagen has to add braces and writes label={[red]above:$s\1e3$}. Since this
looks a bit ugly, Hagen decides to redefine the every label style.

\usetikzlibrary {positioning}

O \begin{tikzpicture} [every label/.style={red}]
\node [place] (waiting) {};
\node [place] (critical) [below=of waitingl {3};
\node [place] (semaphore) [below=of critical,

|:| Q |:| label=above:$s\le3$] {};

\node [transition] (leave critical) [right=of criticall {3};
\node [transition] (enter critical) [left=of criticall {};

s<3 \end{tikzpicture}

55

3.10 Connecting Nodes

It is now high time to connect the nodes. Let us start with something simple, namely with the straight line
from enter critical to critical. We want this line to start at the right side of enter critical and to
end at the left side of critical. For this, we can use the anchors of the nodes. Every node defines a whole
bunch of anchors that lie on its border or inside it. For example, the center anchor is at the center of the
node, the west anchor is on the left of the node, and so on. To access the coordinate of a node, we use a
coordinate that contains the node’s name followed by a dot, followed by the anchor’s name:

\usetikzlibrary {positioning}
<::> \begin{tikzpicture}
\node [place] (waiting) {3;
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {3};
[:] () [:] \node [transition] (leave critical) [right=of criticall {};

\node [transition] (enter critical) [left=of criticall {I};
\draw [->] (enter critical.east) -- (critical.west);

\end{tikzpicture}

@)

Next, let us tackle the curve from waiting to enter critical. This can be specified using curves and
controls:

\usetikzlibrary {positioning}

\begin{tikzpicture}

\node [place] (waiting) {3;
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {I};

[:] \node [transition] (leave critical) [right=of criticall {};
\node [transition] (enter critical) [left=of criticall {I};
\draw [->] (enter critical.east) -- (critical.west);
\draw [->] (waiting.west) .. controls +(left:5mm) and +(up:5mm)

. (enter critical.north);

<::> \end{tikzpicture}

Hagen sees how he can now add all his edges, but the whole process seems a but awkward and not very
flexible. Again, the code seems to obscure the structure of the graphic rather than showing it.
So, let us start improving the code for the edges. First, Hagen can leave out the anchors:

\usetikzlibrary {positioning}

\begin{tikzpicture}

\node [place] (waiting) {};

\node [place] (critical) [below=of waitingl {};

\node [place] (semaphore) [below=of criticall {};
[:] \node [transition] (leave critical) [right=of criticall {I};

\node [transition] (enter critical) [left=of criticall {I};

\draw [->] (enter critical) -- (critical);

\draw [->] (waiting) .. controls +(left:8mm) and +(up:8mm)

. (enter critical);

<::> \end{tikzpicture}

Hagen is a bit surprised that this works. After all, how did TikZ know that the line from enter critical
to critical should actually start on the borders? Whenever TikZ encounters a whole node name as a
“coordinate”, it tries to “be smart” about the anchor that it should choose for this node. Depending on
what happens next, TikZ will choose an anchor that lies on the border of the node on a line to the next
coordinate or control point. The exact rules are a bit complex, but the chosen point will usually be correct
— and when it is not, Hagen can still specify the desired anchor by hand.

Hagen would now like to simplify the curve operation somehow. It turns out that this can be accomplished
using a special path operation: the to operation. This operation takes many options (you can even define
new ones yourself). One pair of options is useful for Hagen: The pair in and out. These options take angles
at which a curve should leave or reach the start or target coordinates. Without these options, a straight line
is drawn:

56

\usetikzlibrary {positioning}

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {};

[:] \node [transition] (leave critical) [right=of criticall {};
\node [transition] (enter critical) [left=of criticall {I};
\draw [->] (enter critical) to (critical);
\draw [->] (waiting) to [out=180,in=90] (enter critical);
<::> \end{tikzpicture}

There is another option for the to operation, that is even better suited to Hagen’s problem: The
bend right option. This option also takes an angle, but this angle only specifies the angle by which
the curve is bent to the right:

\usetikzlibrary {positioning}

\begin{tikzpicture}
\node [place] (waiting) {3};
\node [place] (critical) [below=0f waiting]l {};
\node [place] (semaphore) [below=of criticall {};

[:] \node [transition] (leave critical) [right=of criticall {3};

\node[transition] (enter critical) [left=of criticall {};
\draw [->] (enter critical) to (critical);
\draw [->] (waiting) to [bend right=45] (enter critical);
\draw [->] (enter critical) to [bend right=45] (semaphore) ;

\end{tikzpicture}

It is now time for Hagen to learn about yet another way of specifying edges: Using the edge path
operation. This operation is very similar to the to operation, but there is one important difference: Like a
node the edge generated by the edge operation is not part of the main path, but is added only later. This
may not seem very important, but it has some nice consequences. For example, every edge can have its own
arrow tips and its own color and so on and, still, all the edges can be given on the same path. This allows
Hagen to write the following:

\usetikzlibrary {positioning}

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {};
[:] \node [transition] (leave critical) [right=of criticall {I};
\node [transition] (enter critical) [left=of criticall {}
edge [->] (critical)

edge [<-,bend left=45] (waiting)
edge [->,bend right=45] (semaphore);
\end{tikzpicture}

Jo

Each edge caused a new path to be constructed, consisting of a to between the node enter critical
and the node following the edge command.

The finishing touch is to introduce two styles pre and post and to use the bend angle=45 option to set
the bend angle once and for all:

57

\usetikzlibrary {arrows.meta,positioning}
% Styles place and transition as before

\begin{tikzpicture}
[bend angle=45,

pre/.style={<-,shorten <=1pt,>={Stealth[round]},semithick},

//\\ post/.style={->,shorten >=1pt,>={Stealth[round]},semithick}]
N
\node [place] (waiting) {};
\node [place] (critical) [below=of waitingl {};
\node [place] (semaphore) [below=of criticall {};

\node [transition] (leave
edge [pre]
edge [post,bend right]
edge [pre, bend left]
\node [transition] (enter
edge [post]
edge [pre, bend left]
edge [post,bend right]

critical) [right=of criticall {}
(critical)

(waiting)

(semaphore) ;

critical) [left=of criticall
(critical)

(waiting)

(semaphore) ;

{3

\end{tikzpicture}

3.11 Adding Labels Next to Lines

The next thing that Hagen needs to add is the “2” at the arcs. For this Hagen can use TikZ’s automatic
node placement: By adding the option auto, TikZ will position nodes on curves and lines in such a way that
they are not on the curve but next to it. Adding swap will mirror the label with respect to the line. Here is
a general example:

\begin{tikzpicture} [auto,bend right]

120° 1 \node (a) at (0:1) {$0"\circ$};
} \node (b) at (120:1) {$120"\circ$};
2 (9 0° \node (c) at (240:1) {$240"\circ$};
_ji/// \draw (a) to node {1} node [swap] {1'} (b)
240° gy (b) to node {2} node [swap]l {2'} (c)
(c) to node {3} node [swap] {3'} (a);
\end{tikzpicture}

What is happening here? The nodes are given somehow inside the to operation! When this is done, the
node is placed on the middle of the curve or line created by the to operation. The auto option then causes
the node to be moved in such a way that it does not lie on the curve, but next to it. In the example we
provide even two nodes on each to operation.

For Hagen that auto option is not really necessary since the two “2” labels could also easily be placed
“by hand”. However, in a complicated plot with numerous edges automatic placement can be a blessing.

0!

\usetikzlibrary {arrows.meta,positioning}
/% Styles as before
\begin{tikzpicture} [bend angle=45]

\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall {};

\node [transition]
edge [prel
edge [post,bend
edge [pre, bend

\node [transition]
edge [post]
edge [pre, bend
edge [post,bend

\end{tikzpicture}

e/

3.12

(leave critical) [right=of criticall {}

(critical)
right] nodelauto,swap] {2} (waiting)
left] (semaphore) ;
(enter critical) [left=of criticall {}

(critical)
left] (waiting)
right] (semaphore) ;

Adding the Snaked Line and Multi-Line Text

With the node mechanism Hagen can now easily create the two Petri nets. What he is unsure of is how he

can create the snaked line between the nets.
For this he can use a decoration. To draw
decoration=snake and decorate on the path.

the snaked line, Hagen only needs to set the two options
This causes all lines of the path to be replaced by snakes.

It is also possible to use snakes only in certain parts of a path, but Hagen will not need this.

58

ANANNANNSY> \usetikzlibrary {decorations.pathmorphing}
\begin{tikzpicture}
\draw [->,decorate,decoration=snake] (0,0) -- (2,0);
\end{tikzpicture}

Well, that does not look quite right, yet. The problem is that the snake happens to end exactly at the
position where the arrow begins. Fortunately, there is an option that helps here. Also, the snake should be
a bit smaller, which can be influenced by even more options.

ANNANNNNNNNNNNN \usetikzlibrary {decorations.pathmorphing}
\begin{tikzpicture}
\draw [->,decorate,
decoration={snake, amplitude=.4mm, segment length=2mm,post length=1mm}]
(0,0) -- (3,0);
\end{tikzpicture}

Now Hagen needs to add the text above the snake. This text is a bit challenging since it is a multi-line
text. Hagen has two options for this: First, he can specify an align=center and then use the \\ command
to enforce the line breaks at the desired positions.

\usetikzlibrary {decorations.pathmorphing}
replacement of \begin{tikzpi
. egin{tikzpicture}
the capacity \draw [->,decorate,
by'tvvo p]aces decoration={snake,amplitude=.4mm, segment length=2mm,post length=1mm}]
(0,0) -- (3,0)
node [above,align=center,midway]
{
replacement of\\
the \textcolor{red}{capacity}\\
by \textcolor{red}{two places}
3
\end{tikzpicture}

Instead of specifying the line breaks “by hand”, Hagen can also specify a width for the text and let TEX
perform the line breaking for him:

\usetikzlibrary {decorations.pathmorphing}
replacement of v 4 L

) \begin{tikzpicture}
the capacity \draw [->,decorate,
by’t\vo p]aces decoration={snake, amplitude=.4mm, segment length=2mm,post length=1mm}]

(0,0) -- (3,0)
node [above,text width=3cm,align=center,midway]
{
replacement of the \textcolor{red}{capacity} by
\textcolor{red}{two places}
};
\end{tikzpicture}

3.13 Using Layers: The Background Rectangles

Hagen still needs to add the background rectangles. These are a bit tricky: Hagen would like to draw the
rectangles after the Petri nets are finished. The reason is that only then can he conveniently refer to the
coordinates that make up the corners of the rectangle. If Hagen draws the rectangle first, then he needs to
know the exact size of the Petri net — which he does not.

The solution is to use layers. When the backgrounds library is loaded, Hagen can put parts of his picture
inside a scope with the on background layer option. Then this part of the picture becomes part of the
layer that is given as an argument to this environment. When the {tikzpicture} environment ends, the
layers are put on top of each other, starting with the background layer. This causes everything drawn on
the background layer to be behind the main text.

The next tricky question is, how big should the rectangle be? Naturally, Hagen can compute the size
“by hand” or using some clever observations concerning the x- and y-coordinates of the nodes, but it would
be nicer to just have TikZ compute a rectangle into which all the nodes “fit”. For this, the fit library can
be used. It defines the fit options, which, when given to a node, causes the node to be resized and shifted
such that it exactly covers all the nodes and coordinates given as parameters to the fit option.

59

()

\usetikzlibrary {arrows.meta,backgrounds,fit,positioning}
/% Styles as before
\begin{tikzpicture}[bend angle=45]

\node [place] (waiting) {il;
\node [place] (critical) [below=of waitingl {};
\node [place] (semaphore) [below=of criticall {};

\node [transition] (leave critical) [right=of criticall {}

edge [prel (critical)
edge [post,bend right] nodel[auto,swap] {2} (waiting)
edge [pre, bend left] (semaphore) ;
\node [transition] (enter critical) [left=of criticall {}
edge [post] (critical)
edge [pre, bend left] (waiting)
edge [post,bend right] (semaphore) ;

\begin{scope} [on background layer]
\node [fill=black!30,fit=(waiting) (critical) (semaphore)

(leave critical) (enter critical)] {};

\end{scope}
\end{tikzpicture}

3.14 The Complete Code

Hagen has now finally put everything together. Only then does he learn that there is already a library for
drawing Petri nets! It turns out that this library mainly provides the same definitions as Hagen did. For
example, it defines a place style in a similar way as Hagen did. Adjusting the code so that it uses the library

shortens Hagen code a bit, as shown in the following.

First, Hagen needs less style definitions, but he still needs to specify the colors of places and transi-

tions.
\begin{tikzpicture}
[node distance=1.3cm,on grid,>={Stealth[round]},bend angle=45,auto,
every place/.style= {minimum size=6mm,thick,draw=blue!75,fill=blue!20},
every transition/.style={thick,draw=black!75,fill=black!20},
red place/.style= {place,draw=red!75,fill=red/20},
every label/.style= {red}]

Now comes the code for the nets:

o
-
>

\usetikzlibrary {arrows.meta,petri,positioning}

\node [place,tokens=1] (w1l) 45
\node [place] (c1) [below=of wi] {};
\node [placel (s) [below=of c1,label=above:$s\le 381 {I};
\node [place] (c2) [below=of sl {};
\node [place,tokens=1] (w2) [below=of cZ2] s
\node [transition] (el) [left=of ci1] {}

edge [pre,bend left] (w1)

edge [post,bend right] (s)

edge [post] (c1);
\node [transition] (e2) [left=of c2] {}

edge [pre,bend right] (w2)

edge [post,bend left] (s)

edge [post] (c2);
\node [transition] (11) [right=of c1] {}

edge [pre] (c1)

edge [pre,bend left] (s)

edge [post,bend right] node[swap] {2} (wl);

\node [transition] (12) [right=of c2] {}
edge [prel (c2)
edge [pre,bend right] (s)
edge [post,bend left] node {2} w2) ;

60

\usetikzlibrary {arrows.meta,petri,positioning}

2 \begin{scopel} [xshift=6cm]

\node [place,tokens=1] (wi') {3};
\node [place] (c1') [below=of wi'] g

\node [red placel (s1') [below=of c1',xshift=-5mm]
O_' [label=left:$s8] 1F;

\node [red place,tokens=3] (s2') [below=of c1',xshift=5mm]

[label=right:$\bar sl {};
S 5 \node [place] (c2') [below=of s1',xshift=b6mm] {};
\node [place,tokens=1] (w2') [below=of c2'] {3};

\node [transition] (el') [left=of c1'] {}

<) edge [pre,bend left] (wi")
edge [post] (s1")

edge [pre] (s2")
edge [post] (c1');
2 \node [transition] (e2') [left=of c2'] {}
edge [pre,bend right] (w2')
edge [post] (s1")
edge [pre] (s2")
edge [post] (c2');
\node [transition] (11') [right=of c1'] {}
edge [pre] (c1")
edge [pre] (s1")
edge [post] (s2')

edge [post,bend right] nodel[swap] {2} (wl');
\node [transition] (12') [right=of c2'] {}

edge [pre] (c2")

edge [pre] (s1")

edge [post] (s2")

edge [post,bend left] mnode {2} (w2');
\end{scope}

The code for the background and the snake is the following;:

\begin{scopel} [on background layer]
\node (r1) [fill=black’/10,rounded corners,fit=(wl) (w2) (el) (e2)(11)(12)] {};
\node (r2) [fill=black!/10,rounded corners,fit=(w1')w2') (e1')(e2')(11')(12')] {};
\end{scope}

\draw [shorten >=1mm,->,thick,decorate,
decoration={snake, amplitude=.4mm, segment length=2mm,
pre=moveto,pre length=1mm,post length=2mm}]
(r1) -- (r2) node [above=1mm,midway,text width=3cm,align=center]
{replacement of the \textcolor{red}{capacity} by \textcolor{red}{two places}};
\end{tikzpicture}

61

4 Tutorial: Euclid’s Amber Version of the FElements

In this third tutorial we have a look at how TikZ can be used to draw geometric constructions.

Euclid is currently quite busy writing his new book series, whose working title is “Elements” (Euclid is
not quite sure whether this title will convey the message of the series to future generations correctly, but he
intends to change the title before it goes to the publisher). Up to now, he wrote down his text and graphics
on papyrus, but his publisher suddenly insists that he must submit in electronic form. Euclid tries to argue
with the publisher that electronics will only be discovered thousands of years later, but the publisher informs
him that the use of papyrus is no longer cutting edge technology and Euclid will just have to keep up with
modern tools.

Slightly disgruntled, Euclid starts converting his papyrus entitled “Book I, Proposition I” to an amber
version.

4.1 Book I, Proposition I
The drawing on his papyrus looks like this:!

Proposition I
To construct an on a given finite straight line.

Let AB be the given finite straight line. It is required to construct an
on the straight line AB.

Describe the circle BC'D with center A and radius AB. Again describe
the circle ACE with center B and radius BA. Join the straight lines
CA and CB from the point C at which the circles cut one another to
the points A and B.

Now, since the point A is the center of the circle C' DB, therefore AC
equals AB. Again, since the point B is the center of the circle CAFE,
therefore BC' equals BA. But AC was proved equal to AB, therefore
each of the straight lines AC and BC' equals AB. And things which
equal the same thing also equal one another, therefore AC' also equals
BC'. Therefore the three straight lines AC, AB, and BC equal one
another. Therefore the ABC' is equilateral, and it has been

constructed on the given finite straight line AB.

Let us have a look at how Euclid can turn this into TikZ code.

4.1.1 Setting up the Environment

As in the previous tutorials, Euclid needs to load TikZ, together with some libraries. These libraries are
calc, intersections, through, and backgrounds. Depending on which format he uses, Euclid would use
one of the following in the preamble:

% For LaTeX:
\usepackage{tikz}
\usetikzlibrary{calc, intersections,through,backgrounds}

7% For plain TeX:
\input tikz.tex
\usetikzlibrary{calc,intersections,through,backgrounds}

% For ConTeXt:
\usemodule [tikz]
\usetikzlibrary[calc,intersections,through,backgrounds]

IThe text is taken from the wonderful interactive version of Euclid’s Elements by David E. Joyce, to be found on his website
at Clark University.

62

4.1.2 The Line AB

The first part of the picture that Euclid wishes to draw is the line AB. That is easy enough, something like
\draw (0,0) -- (2,1); might do. However, Euclid does not wish to reference the two points A and B as
(0,0) and (2,1) subsequently. Rather, he wishes to just write A and B. Indeed, the whole point of his book
is that the points A and B can be arbitrary and all other points (like C') are constructed in terms of their
positions. It would not do if Euclid were to write down the coordinates of C' explicitly.

So, Euclid starts with defining two coordinates using the \coordinate command:

___— \begin{tikzpicture}
\coordinate (A) at (0,0);
\coordinate (B) at (1.25,0.25);

\draw[blue] (A) -- (B);
\end{tikzpicture}

That was easy enough. What is missing at this point are the labels for the coordinates. Euclid does not
want them on the points, but next to them. He decides to use the label option:

B \begin{tikzpicture}
A _— \coordinate [label=left:\textcolor{blue}{A}] (A) at (0,0);
\coordinate [label=right:\teztcolor{blue}{B}] (B) at (1.25,0.25);

\draw[blue] (4) -- (B);
\end{tikzpicture}

At this point, Euclid decides that it would be even nicer if the points A and B were in some sense
“random”. Then, neither Euclid nor the reader can make the mistake of taking “anything for granted”
concerning these position of these points. Euclid is pleased to learn that there is a rand function in TikZ
that does exactly what he needs: It produces a number between —1 and 1. Since TikZ can do a bit of math,
Euclid can change the coordinates of the points as follows:

\coordinate [...] (A) at (0+0.1*rand,0+0.1*rand);
\coordinate [...] (B) at (1.25+0.1*rand,0.25+0.1*rand);

This works fine. However, Euclid is not quite satisfied since he would prefer that the “main coordinates”
(0,0) and (1.25,0.25) are “kept separate” from the perturbation 0.1(rand, rand). This means, he would like
to specify that coordinate A as “the point that is at (0,0) plus one tenth of the vector (rand, rand)”.

It turns out that the calc library allows him to do exactly this kind of computation. When this library is
loaded, you can use special coordinates that start with ($ and end with $) rather than just (and). Inside
these special coordinates you can give a linear combination of coordinates. (Note that the dollar signs are
only intended to signal that a “computation” is going on; no mathematical typesetting is done.)

The new code for the coordinates is the following;:

\coordinate [...] (A) at ($ (0,0) + .1*(rand,rand) $);
\coordinate [...] (B) at ($ (1.25,0.25) + .1x(rand,rand) $);

Note that if a coordinate in such a computation has a factor (like . 1), you must place a * directly before
the opening parenthesis of the coordinate. You can nest such computations.

4.1.3 The Circle Around A

The first tricky construction is the circle around A. We will see later how to do this in a very simple manner,
but first let us do it the “hard” way.

The idea is the following: We draw a circle around the point A whose radius is given by the length of
the line AB. The difficulty lies in computing the length of this line.

Two ideas “nearly” solve this problem: First, we can write ($§ (A) - (B) $) for the vector that is the
difference between A and B. All we need is the length of this vector. Second, given two numbers z and
y, one can write veclen(x,y) inside a mathematical expression. This gives the value y/x? + y2, which is
exactly the desired length.

The only remaining problem is to access the z- and y-coordinate of the vector AB. For this, we need
a new concept: the let operation. A let operation can be given anywhere on a path where a normal path
operation like a line-to or a move-to is expected. The effect of a let operation is to evaluate some coordinates
and to assign the results to special macros. These macros make it easy to access the z- and y-coordinates of
the coordinates.

Euclid would write the following;:

63

\usetikzlibrary {calc}

\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
B \coordinate [label=right:B] (B) at (1.25,0.25);

\draw (A) -- (B);

\draw (A) let
\pl = ($ (B) - (4) $)
in
circle ({veclen(\x1,\y1)});
\end{tikzpicture}

Each assignment in a let operation starts with \p, usually followed by a (digit). Then comes an equal
sign and a coordinate. The coordinate is evaluated and the result is stored internally. From then on you can
use the following expressions:

1. \x(digit) yields the z-coordinate of the resulting point.
2. \y(digit) yields the y-coordinate of the resulting point.
3. \p(digit) yields the same as \x(digit) , \y(digit).

You can have multiple assignments in a let operation, just separate them with commas. In later assignments
you can already use the results of earlier assignments.

Note that \p1 is not a coordinate in the usual sense. Rather, it just expands to a string like 10pt,20pt.
So, you cannot write, for instance, (\pl.center) since this would just expand to (10pt,20pt.center),
which makes no sense.

Next, we want to draw both circles at the same time. Each time the radius is veclen(\x1,\y1). It
seems natural to compute this radius only once. For this, we can also use a let operation: Instead of
writing \p1 = ..., we write \n2 = Here, “n” stands for “number” (while “p” stands for “point”). The
assignment of a number should be followed by a number in curly braces.

\usetikzlibrary {calc}

\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\draw let \pl
\n2
in
(A) circle (\n2)
(B) circle (\n2);
\end{tikzpicture}

($ (B - (1) $,
{veclen(\x1,\y1)}

In the above example, you may wonder, what \n1 would yield? The answer is that it would be undefined
— the \p, \x, and \y macros refer to the same logical point, while the \n macro has “its own namespace”.
We could even have replaced \n2 in the example by \n1 and it would still work. Indeed, the digits following
these macros are just normal TEX parameters. We could also use a longer name, but then we have to use
curly braces:

\usetikzlibrary {calc}

\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\draw let \pi
\n{radius}
in
(A) circle (\n{radius})
(B) circle (\n{radius});
\end{tikzpicture}

$ (B - A %,
{veclen(\x1,\y1)}

At the beginning of this section it was promised that there is an easier way to create the desired circle.
The trick is to use the through library. As the name suggests, it contains code for creating shapes that go
through a given point.

The option that we are looking for is circle through. This option is given to a node and has the
following effects: First, it causes the node’s inner and outer separations to be set to zero. Then it sets the

64

shape of the node to circle. Finally, it sets the radius of the node such that it goes through the parameter
given to circle through. This radius is computed in essentially the same way as above.

\usetikzlibrary {through}

\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
B \coordinate [label=right:B] (B) at (1.25,0.25);

\draw (A) -- (B);

\node [draw,circle through=(B),label=left:D] at (A) {};
\end{tikzpicture}

4.1.4 The Intersection of the Circles

Euclid can now draw the line and the circles. The final problem is to compute the intersection of the two
circles. This computation is a bit involved if you want to do it “by hand”. Fortunately, the intersections
library allows us to compute the intersection of arbitrary paths.

The idea is simple: First, you “name” two paths using the name path option. Then, at some later
point, you can use the option name intersections, which creates coordinates called intersection-1,
intersection-2, and so on at all intersections of the paths. FEuclid assigns the names D and E to the paths
of the two circles (which happen to be the same names as the nodes themselves, but nodes and their paths
live in different “namespaces”).

C

N, s

\usetikzlibrary {intersections,through}
\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\node (D) [name path=D,draw,circle through=(B),label=left:D] at (A) {};
\node (E) [name path=E,draw,circle through=(4),label=right:E] at (B) {};

% Name the coordinates, but do not draw anything:
\path [name intersections={of=D and E}];

\coordinate [label=above:C] (C) at (intersection-1);
\draw [red] (A) -- (C);
\draw [red] (B) -- (C);

\end{tikzpicture}

It turns out that this can be further shortened: The name intersections takes an optional argument
by, which lets you specify names for the coordinates and options for them. This creates more compact code.
Although Euclid does not need it for the current picture, it is just a small step to computing the bisection
of the line AB:

N\
D/

65

\usetikzlibrary {intersections,through}
\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw [name path=4--B] (A) -- (B);

\node (D) [name path=D,draw,circle through=(B),label=left:D] at (A) {};
\node (E) [name path=E,draw,circle through=(4),label=right:E] at (B) {};

\path [name intersections={of=D and E, by={[label=above:$CHIC, [label=below:$C'$IC'}};
\draw [name path=C--C’,red] (C) -- (C');
\path [name intersections={of=4--B and C--C',by=F}];

\node [fill=red,inner sep=1pt,label=-45:F] at (F) {};
\end{tikzpicture}

4.1.5 The Complete Code

Back to Euclid’s code. He introduces a few macros to make life simpler, like a \A macro for typesetting a
blue A. He also uses the background layer for drawing the triangle behind everything at the end.

Proposition I
To construct an cquilateral triangle on a given finite straight line.

Let AB be the given finite straight line. ..

'y N

\usetikzlibrary {backgrounds,calc,intersections,through}

\begin{tikzpicture}[thick,help lines/.style={thin,draw=black/50}]

\def\A{\textcolor{input}{A}} \def\B{\textcolor{input}{B}}
\def\C{\textcolor{output}{C}} \def\D{D}
\def\E{E}

\colorlet{input}{blue!80!black} \colorlet{output}{red!70!black}
\colorlet{triangle}{orange}

\coordinate [label=left:\4] (A) at ($ (0,0) + .1x(rand,rand) $);
\coordinate [label=right:\B] (B) at ($ (1.25,0.25) + .1x(rand,rand) $);

\draw [input] (A) -- (B);

\node [name path=D,help lines,draw,label=left:\D] (D) at (A) [circle through=(B)] {};
\node [name path=E,help lines,draw,label=right:\E] (E) at (B) [circle through=(4)] {};

\path [name intersections={of=D and E,by={[label=above:\C]C}}];
\draw [output] (A) -- (C) -- (B);

\foreach \point in {A,B,C}
\fill [black,opacity=.5] (\point) circle (2pt);

\begin{pgfonlayer}{background}
\fill[triangle!80] (A) -- (C) -- (B) -- cycle;
\end{pgfonlayer}

\node [below right, text width=10cm,align=justify]l at (4,3) {
\small\textbf{Proposition I}\par
\emph{To construct an \textcolor{trianglel}{equilateral triangle}
on a given \textcolor{input}{finite straight line}.}
\par\vskiplem
Let \A\B\ be the given \textcolor{input}{finite straight line}. \dots
T;
\end{tikzpicture}

66

4.2 Book I, Proposition II

The second proposition in the Elements is the following:

Proposition II
To place a straight line equal to a given straight line with one
end at a

Let A be the given point, and BC the given straight line. It is
required to place a straight line equal to the given straight line
BC with one end at the point
Join the straight line AB from the point A to the point B, and
construct the equilateral triangle DAB on it.
Produce the straight lines AE and BF in a straight line with D
and DB. Describe the circle CGH with center B and radius BC,
and again, describe the circle GK L with center D and radius
DQ@G.
Since the point B is the center of the circle CGH, therefore BC
equals BG. Again, since the point D is the center of the circle
GK L, therefore DL equals DG. And in these DA equals DB,
therefore the remainder AL equals the remainder BG. But BC
was also proved equal to BG, therefore each of the straight lines
L and BC equals BG. And things which equal the same thing
also equal one another, therefore AL also equals BC'

Therefore the straight line AL equal to the given straight line
BC has been placed with one end at the

4.2.1 Using Partway Calculations for the Construction of D

Euclid’s construction starts with “referencing” Proposition I for the construction of the point D. Now, while
we could simply repeat the construction, it seems a bit bothersome that one has to draw all these circles
and do all these complicated constructions.

For this reason, TikZ supports some simplifications. First, there is a simple syntax for computing a point
that is “partway” on a line from p to ¢: You place these two points in a coordinate calculation — remember,
they start with ($ and end with $) — and then combine them using ! (part)!. A (part) of 0 refers to the first
coordinate, a (part) of 1 refers to the second coordinate, and a value in between refers to a point on the line
from p to q. Thus, the syntax is similar to the xcolor syntax for mixing colors.

Here is the computation of the point in the middle of the line AB:

B \usetikzlibrary {calc}
A e \begin{tikzpicture}
X \coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);
\node [fill=red,inner sep=Ipt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
\end{tikzpicture}

The computation of the point D in Euclid’s second proposition is a bit more complicated. It can be
expressed as follows: Consider the line from X to B. Suppose we rotate this line around X for 90° and then
stretch it by a factor of sin(60°) - 2. This yields the desired point D. We can do the stretching using the
partway modifier above, for the rotation we need a new modifier: the rotation modifier. The idea is that
the second coordinate in a partway computation can be prefixed by an angle. Then the partway point is
computed normally (as if no angle were given), but the resulting point is rotated by this angle around the
first point.

D \usetikzlibrary {calc}
. \begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
B \draw (A) -- (B);
X \node [fill=red,inner sep=Ipt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
\node [fill=red,inner sep=1pt,label=above:D] (D) at
($ (X) ! {sin(60)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
\end{tikzpicture}

67

Finally, it is not necessary to explicitly name the point X. Rather, again like in the xcolor package, it
is possible to chain partway modifiers:

l) \usetikzlibrary {calc}
\begin{tikzpicture}
\coordinate [label=left:4] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
B \draw (A) -- (B);
A \node [fill=red,inner sep=1pt,label=above:D] (D) at
($ (&) ! .51 (B) ! {sin(60)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
\end{tikzpicture}

4.2.2 Intersecting a Line and a Circle

The next step in the construction is to draw a circle around B through C, which is easy enough to do using
the circle through option. Extending the lines DA and DB can be done using partway calculations, but
this time with a part value outside the range [0,1]:

\usetikzlibrary {calc,through}
\begin{tikzpicture}

\coordinate [label=left:4] (A) at (0,0);

\coordinate [label=right:B] (B) at (0.75,0.25);

\coordinate [label=above:C] (C) at (1,1.5);

\draw (A) -- (B) -- (C);

\coordinate [label=above:D] (D) at

($ (A) ' .51 (B) ! {sin(60)*2} ! 90:(B) $) {};

\node (H) [label=135:H,draw,circle through=(C)] at (B) {};

\draw (D) -- ($ (D) ! 3.5 ! (B) $) coordinate [label=below:F] (F);

\draw (D) -- ($ (D) ! 2.5 ! (A) $) coordinate [label=below:E] (E);
\end{tikzpicture}

We now face the problem of finding the point G, which is the intersection of the line BF' and the circle H.
One way is to use yet another variant of the partway computation: Normally, a partway computation has the
form (p)! (factor)!{q), resulting in the point (1 — (factor)){p) + (factor)(q). Alternatively, instead of (factor)
you can also use a (dimension) between the points. In this case, you get the point that is (dimension) away
from (p) on the straight line to (g).

We know that the point G is on the way from B to F'. The distance is given by the radius of the circle H.
Here is the code for computing H:

\usetikzlibrary {calc,through}
\node (H) [label=135:H,draw,circle through=(C)] at (B) {};
\path let \p1 = (§ (B) - (C) $) in
coordinate [label=left:G] (G) at ($ (B) ! veclen(\x1,\y1) ! (F) $);
\fill[red,opacity=.5] (G) circle (2pt);

However, there is a simpler way: We can simply name the path of the circle and of the line in question
and then use name intersections to compute the intersections.

\usetikzlibrary {calc,intersections,through}
\node (H) [name path=H,label=135:8H$,draw,circle through=(C)] at (B) {};
\path [name path=B--F] (B) —- (F);
\path [name intersections={of=H and B--F,by={[label=left:G]IG}}];
\fill[red,opacity=.5] (G) circle (2pt);

68

4.2.3 The Complete Code

\usetikzlibrary {calc,intersections,through}

\begin{tikzpicture}[thick,help lines/.style={thin,draw=black!/50}]
\def\A{\textcolor{orange}{A}} \def\B{\textcolor{input}{B}}
\def\C{\textcolor{input}{C}} \def\D{D}

\def\E{E} \def\F{F}
\def\G{G} \def \H{H}
\def\K{K} \def\L{\textcolor{output}{L}}

\colorlet{input}{blue!80!black} \colorlet{output}{red!70!black}
\coordinate [label=left:\4] (A) at ($ (0,0) + .1x(rand,rand) $);
\coordinate [label=right:\B] (B) at ($ (1,0.2) + .1x(rand,rand) $);
\coordinate [label=above:\C] (C) at ($ (1,2) + .1x(rand,rand) $);

\draw [input] (B) -- (C);
\draw [help lines] (A) -- (B);

\coordinate [label=above:\D] (D) at ($ (A)!.5!(B) ! {sin(60)*2} ! 90:(B) $);

\draw [help lines] (D) -- ($ (D)!3.75!(A) $) coordinate [label=-135:\E] (E);
\draw [help lines] (D) -- ($ (D)!3.75!(B) $) coordinate [label=-45:\F] (F);

\node (H) at (B) [name path=H,help lines,circle through=(C),draw,label=135:\H] {};
\path [name path=B--F] (B) -- (F);

\path [name intersections={of=H and B--F,by={[label=right:\GJG}} ;

\node (K) at (D) [name path=K,help lines,circle through=(G),draw,label=135:\K] {};
\path [name path=4--E] (A) -- (E);

\path [name intersections={of=K and A--E,by={[label=below:\LJL}}];

\draw [output] (&) -- (L);

\foreach \point in {A,B,C,D,G,L}
\fill [black,opacity=.5] (\point) circle (2pt);

% \node ...
\end{tikzpicture}

69

5 Tutorial: Diagrams as Simple Graphs

In this tutorial we have a look at how graphs and matrices can be used to typeset a diagram.

Ilka, who just got tenure for her professorship on Old and Lovable Programming Languages, has recently
dug up a technical report entitled The Programming Language Pascal in the dusty cellar of the library of
her university. Having been created in the good old times using pens and rules, it looks like this?:

unsigned integer

—»Lunsigned integer

For her next lecture, Ilka decides to redo this diagram, but this time perhaps a bit cleaner and perhaps
also bit “cooler”.

—>| unsigned integer i»@

—I—>{ digit) L l unsigned integer —J—>

Having read the previous tutorials, Ilka knows already how to set up the environment for her diagram,
namely using a tikzpicture environment. She wonders which libraries she will need. She decides that she
will postpone the decision and add the necessary libraries as needed as she constructs the picture.

5.1 Styling the Nodes

The bulk of this tutorial will be about arranging the nodes and connecting them using chains, but let us
start with setting up styles for the nodes.

There are two kinds of nodes in the diagram, namely what theoreticians like to call terminals and
nonterminals. For the terminals, Ilka decides to use a black color, which visually shows that “nothing needs
to be done about them”. The nonterminals, which still need to be “processed” further, get a bit of red mixed
in.

Ilka starts with the simpler nonterminals, as there are no rounded corners involved. Naturally, she sets
up a style:

\usetikzlibrary {positioning}
\begin{tikzpicture}[
nonterminal/.style={
/% The shape:
rectangle,
/% The size:
minimum size=6mm,
% The border:
very thick,
draw=red!50!black!50, 4 50% red and 50) black,
7 and that mized with 50/ white

unsigned integer

% The filling:

top color=white, /% a shading that is white at the top...
bottom color=red!/50/black!20, 7 and something else at the bottom
% Font
font=\itshape
H
\node [nonterminal] {unsigned integer};
\end{tikzpicture}

Tlka is pretty proud of the use of the minimum size option: As the name suggests, this option ensures
that the node is at least 6mm by 6mm, but it will expand in size as necessary to accommodate longer text.
By giving this option to all nodes, they will all have the same height of 6mm.

Styling the terminals is a bit more difficult because of the round corners. Ilka has several options how
she can achieve them. One way is to use the rounded corners option. It gets a dimension as parameter

2The shown diagram was not scanned, but rather typeset using TikZ. The jittering lines were created using the random
steps decoration.

70

and causes all corners to be replaced by little arcs with the given dimension as radius. By setting the radius
to 3mm, she will get exactly what she needs: circles, when the shapes are, indeed, exactly 6mm by 6mm
and otherwise half circles on the sides:

. - \usetikzlibrary {positioning}
Q @ \begin{tikzpicture}[node distance=5mm,
terminal/.style={

/% The shape:
rectangle,minimum size=6mm,rounded corners=3mm,
/% The rest
very thick,draw=black!50,
top color=white,bottom color=black!20,

font=\ttfamily}]

\node (dot) [terminal] L

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digit] {E};
\end{tikzpicture}

Another possibility is to use a shape that is specially made for typesetting rectangles with arcs on the
sides (she has to use the shapes.misc library to use it). This shape gives Ilka much more control over the
appearance. For instance, she could have an arc only on the left side, but she will not need this.

.. \usetikzlibrary {positioning,shapes.misc}
@ @ \begin{tikzpicture}[node distance=5mn,
terminal/.style={

% The shape:
rounded rectangle,
minimum size=6mm,
% The rest
very thick,draw=black!50,
top color=white,bottom color=black!20,
font=\ttfamily}]

\node (dot) [terminal] Lolrg

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};
\end{tikzpicture}

At this point, she notices a problem. The baseline of the text in the nodes is not aligned:

(.. \ \usetikzlibrary {calc,positioning,shapes.misc}
flq\ digit f:;\ y P & P

N S 7 < \begin{tikzpicture}[node distance=5mm]

\node (dot) [terminall Lalrg
\node (digit) [terminal,right=of dot] {digit};
\node (E) [terminal ,right=of digit] {E};

\draw [help lines] let \pl = (dot.base),
\p2 = (digit.base),
\p3 = (E.base)
in (-.5,\y1) -- (3.5,\y1)
(-.5,\y2) -- (3.5,\y2)
(=.5,\y3) == (3.5,\y3);

\end{tikzpicture}

(Ilka has moved the style definition to the preamble by saying \tikzset{terminal/.style=...}, so that
she can use it in all pictures.)

For the digit and the E the difference in the baselines is almost imperceptible, but for the dot the
problem is quite severe: It looks more like a multiplication dot than a period.

Ilka toys with the idea of using the base right=of... option rather than right=of... to align the
nodes in such a way that the baselines are all on the same line (the base right option places a node right
of something so that the baseline is right of the baseline of the other object). However, this does not have
the desired effect:

. \usetikzlibrary {positioning,shapes.misc}
@ \begin{tikzpicture} [node distance=5mm]

\node (dot) [terminal] Lo g

\node (digit) [terminal,base right=of dot] {digit};

\node (E) [terminal ,base right=of digit] {E};
\end{tikzpicture}

The nodes suddenly “dance around”! There is no hope of changing the position of text inside a node
using anchors. Instead, Ilka must use a trick: The problem of mismatching baselines is caused by the fact

71

that . and digit and E all have different heights and depth. If they all had the same, they would all be
positioned vertically in the same manner. So, all Ilka needs to do is to use the text height and text depth
options to explicitly specify a height and depth for the nodes.

.. \usetikzlibrary {positioning,shapes.misc}
digit \begin{tikzpicture} [node distance=5mm,

text height=1.5ez,text depth=.25ex]

\node (dot) [terminal] {.};

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digit] {E};
\end{tikzpicture}

5.2 Aligning the Nodes Using Positioning Options

Ilka now has the “styling” of the nodes ready. The next problem is to place them in the right places.
There are several ways to do this. The most straightforward is to simply explicitly place the nodes at
certain coordinates “calculated by hand”. For very simple graphics this is perfectly alright, but it has several
disadvantages:

1. For more difficult graphics, the calculation may become complicated.
2. Changing the text of the nodes may make it necessary to recalculate the coordinates.

3. The source code of the graphic is not very clear since the relationships between the positions of the
nodes are not made explicit.

For these reasons, Ilka decides to try out different ways of arranging the nodes on the page.

The first method is the use of positioning options. To use them, you need to load the positioning
library. This gives you access to advanced implementations of options like above or left, since you can
now say above=of some node in order to place a node above of some node, with the borders separated by
node distance.

Ilka can use this to draw the place the nodes in a long row:

unsigned integer @ @ unsigned integer

\usetikzlibrary {positioning,shapes.misc}
\begin{tikzpicture} [node distance=5mm and 5mm]

\node (uil) [nonterminal] {unsigned integer};
\node (dot) [terminal,right=of ut1] {.};

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digit] {E};

\node (plus) [terminal,above right=of E] {+};

\node (minus) [terminal,below right=of E] {-};

\node (ui2) [nonterminal ,below right=of plus] {unsigned integer};

\end{tikzpicture}

For the plus and minus nodes, Ilka is a bit startled by their placements. Shouldn’t they be more to the
right? The reason they are placed in that manner is the following: The north east anchor of the E node
lies at the “upper start of the right arc”, which, a bit unfortunately in this case, happens to be the top of the
node. Likewise, the south west anchor of the + node is actually at its bottom and, indeed, the horizontal
and vertical distances between the top of the E node and the bottom of the + node are both 5mm.

There are several ways of fixing this problem. The easiest way is to simply add a little bit of horizontal
shift by hand:

72

@ unsigned integer

\usetikzlibrary {positioning,shapes.misc}
\begin{tikzpicture}[node distance=5mm and 5mm]

\node (E) [terminal] {E};

\node (plus) [terminal,above right=of E,xshift=5mm] {GoIE

\node (minus) [terminal,below right=of E,xshift=5mm] =k

\node (ui2) [nonterminal,below right=of plus,xshift=5mm] {unsigned integer};
\end{tikzpicture}

A second way is to revert back to the idea of using a normal rectangle for the terminals, but with rounded
corners. Since corner rounding does not affect anchors, she gets the following result:

@ unsigned integer

\usetikzlibrary {positioning,shapes.misc}
\begin{tikzpicture}[node distance=5mm and 5mm,terminal/.append style={rectangle,rounded corners=3mm}]

\node (E) [terminal] =g

\node (plus) [terminal,above right=of E] {+};

\node (minus) [terminal,below right=of E] =03

\node (ui2) [nonterminal ,below right=of plus] {unsigned integer};
\end{tikzpicture}

A third way is to use matrices, which we will do later.

Now that the nodes have been placed, Ilka needs to add connections. Here, some connections are more
difficult than others. Consider for instance the “repeat” line around the digit. One way of describing this
line is to say “it starts a little to the right of digit than goes down and then goes to the left and finally
ends at a point a little to the left of digit”. Ilka can put this into code as follows:

. \usetikzlibrary {calc,positioning,shapes.misc}
’ ‘ digit . e \begin{tikzpicture}[node distance=5mm and 5mm]

\node (dot) [terminal] Lolrg
\node (digit) [terminal,right=of dot] {digit};
\node (E) [terminal,right=of digit] {E};

\path (dot) edgel->] (digit) 7 simple edges
(digit) edgel->] (E);

\draw [->]

/% start right of digit.east, that is, at the point that is the
% linear combination of digit.east and the vector (2mm,0Opt). We
% use the ($... $) notation for computing linear combinations
($ (digit.east) + (2mm,0) $)
% Now go down
-- ++(0,-.5)
% And back to the left of digit.west
-l ($ (digit.west) - (2mm,0) $);

\end{tikzpicture}

Since Ilka needs this “go up/down then horizontally and then up/down to a target” several times, it
seems sensible to define a special to-path for this. Whenever the edge command is used, it simply adds the
current value of to path to the path. So, Ilka can set up a style that contains the correct path:

73

. \usetikzlibrary {calc,positioning,shapes.misc}
’ ‘ digit . e \begin{tikzpicture}[node distance=5mm and 5mm,

skip loop/.style={to path={-- ++(0,-.5) -/ (\tikztotarget)}}]

\node (dot) [terminall Lobg

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digtt] SIES

\path (dot) edgel[->] (digit) 7 simple edges
(digit) edgel->] (E)

($ (digit.east) + (2mm,0) $)
edge[->,skip loop] ($ (digit.west) - (2mm,0) $);
\end{tikzpicture}

Ilka can even go a step further and make her skip loop style parameterized. For this, the skip loop’s
vertical offset is passed as parameter #1. Also, in the following code Ilka specifies the start and targets
differently, namely as the positions that are “in the middle between the nodes”.

L. \usetikzlibrary {calc,positioning,shapes.misc}
’ I digit . e \begin{tikzpicture}[node distance=5mm and 5mm,

skip loop/.style={to path={-- ++(0,#1) -/ (\tikztotarget)}}]

\node (dot) [terminal] {.};

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digtit] {E};

\path (dot) edgel[->] (digit) / simple edges
(digit) edgel->] (E)

($ (digit.east)!.5!(E.west) $)
edge[->,skip loop=-5mm] ($ (digit.west)!.5!(dot.east) $);
\end{tikzpicture}

5.3 Aligning the Nodes Using Matrices

Ilka is still bothered a bit by the placement of the plus and minus nodes. Somehow, having to add an explicit
xshift seems too much like cheating.

A perhaps better way of positioning the nodes is to use a matriz. In TikZ matrices can be used to align
quite arbitrary graphical objects in rows and columns. The syntax is very similar to the use of arrays and
tables in TEX (indeed, internally TEX tables are used, but a lot of stuff is going on additionally).

In Tlka’s graphic, there will be three rows: One row containing only the plus node, one row containing
the main nodes and one row containing only the minus node.

unsigned integer O @ unsigned integer

\usetikzlibrary {shapes.misc}
\begin{tikzpicture}
\matrix[row sep=1mm,column sep=5mm] {
4 First row:
& & & & \node [terminal] {+}; & \\
7 Second Tow:
\node [nonterminal] {unsigned integerl}; &
\node [terminal] {.} &
\node [terminal] {digit}; &
\node [terminall SIS &
&
\node [nonterminal] {unsigned integer}; \\
% Third row:
& & & & \node [terminall {-}; & \\
I8
\end{tikzpicture}

That was easy! By toying around with the row and columns separations, Ilka can achieve all sorts of
pleasing arrangements of the nodes.

74

Ilka now faces the same connecting problem as before. This time, she has an idea: She adds small
nodes (they will be turned into coordinates later on and be invisible) at all the places where she would like
connections to start and end.

| unsigned integer| * @ { I . l @ . | unsigned integer| < *

\usetikzlibrary {shapes.misc}
\begin{tikzpicture}[point/.style={circle,inner sep=0Opt,minimum size=2pt,fill=red},
skip loop/.style={to path={-- ++(0,#1) -/ (\tikztotarget)}}]
\matrix[row sep=1mm,column sep=2mm] {
% First row:
& & & & & &8 & & & & & \node (plus) [terminall {+};\\
% Second row:

\node (p1) [point] {}; & \node (uil) [nonterminal] {unsigned integer}; &
\node (p2) [point] {}; & \node (dot) [terminal] {.}; &
\node (p3) [point] {}; & \node (digit) [terminal] {digit}; &
\node (p4) [point] {}; & \node (p5) [point]l {}; &
\node (p6) [point] {}; & \node (e) [terminal] {E}; &
\node (p7) [point] {}; & &
\node (p8) [point]l {I}; & \node (ui2) [nonterminal] {unsigned integer}; &
\node (p9) [point] {}; & \node (p10) [point] {5\

% Third Tow:

& & & & & & & & & & & \node (minus) [terminal] {-};\\

Irg

\path (p4) edge [->,skip loop=-5mm] (p3)
(p2) edge [->,skip loop=5mml (p6);
\end{tikzpicture}

Now, it’s only a small step to add all the missing edges.

5.4 The Diagram as a Graph

Matrices allow Ilka to align the nodes nicely, but the connections are not quite perfect. The problem is that
the code does not really reflect the paths that underlie the diagram. For this, it seems natural enough to
Ilka to use the graphs library since, after all, connecting nodes by edges is exactly what happens in a graph.
The graphs library can both be used to connect nodes that have already been created, but it can also be
used to create nodes “on the fly” and these processes can also be mixed.

5.4.1 Connecting Already Positioned Nodes

Ilka has already a fine method for positioning her nodes (using a matrix), so all that she needs is an easy
way of specifying the edges. For this, she uses the \graph command (which is actually just a shorthand for
\path graph). It allows her to write down edges between them in a simple way (the macro \matrixcontent
contains exactly the matrix content from the previous example; no need to repeat it here):

N

unsigned integer ’ II unsigned integer

(0]

\usetikzlibrary {graphs,shapes.misc}
\begin{tikzpicture} [skip loop/.style={to path={-- ++(0,#1) -/ (\tikztotarget)}},
hv path/.style={to path={-/ (\tikztotarget)}},
vh path/.style={to path={/- (\tikztotarget)}}]
\matrix[row sep=1mm,column sep=2mm] { \matrixcontent };

\graph {
(p1) -> (ui1) -- (p2) -> (dot) -- (p3) -> (digit) -- (p4)
-= (p5) -- (p6) -> (e) -- (p7) -- (p8) -> (ui2) -- (p9) -> (p10);
(p4) ->[skip loop=-5mm] (p3);
(p2) ->[skip loop=5mm] (p5);
(p6) ->[skip loop=-1imm] (p9);

(p7) ->[vh path] (plus) -> [hv path] (p8);
(p7) ->[vh path] (minus) -> [hv path] (p8);
s
\end{tikzpicture}

This is already pretty near to the desired result, just a few “finishing touches” are needed to style the
edges more nicely.

However, Ilka does not have the feeling that the graph command is all that hot in the example. It
certainly does cut down on the number of characters she has to write, but the overall graph structure is not
that much clear — it is still mainly a list of paths through the graph. It would be nice to specify that, say,
there the path from (p7) sort of splits to (plus) and (minus) and then merges once more at (p8). Also,
all these parentheses are bit hard to type.

It turns out that edges from a node to a whole group of nodes are quite easy to specify, as shown in
the next example. Additionally, by using the use existing nodes option, Ilka can also leave out all the
parentheses (again, some options have been moved outside to keep the examples shorter):

| ——— _L,@__, 1T@_H_> e _JA_>

\usetikzlibrary {arrows.meta,graphs,shapes.misc}
\begin{tikzpicture} [>={Stealth[round]},thick,black!50,text=black,
every new ->/.style={shorten >=Ipt},
graphs/every graph/.style={edges=rounded corners}]
\matrix[column sep=4mm] { \matrixcontent };

\graph [use existing nodes] {
pl -> uil -- p2 -> dot -- p3 -> digit -- p4 -- p6 -- p6 -> e -- p7 -- p8 -> ui2 -- p9 -> pl0;
p4 ->[skip loop=-5mm] p3;
p2 ->[skip loop=56mm] p5;
p6 —>[skip loop=-11mm] p9;
p7 ->[vh path] { plus, minus } -> [hv path] p8;

};

\end{tikzpicture}

5.4.2 Creating Nodes Using the Graph Command

Ilka has heard that the graph command is also supposed to make it easy to create nodes, not only to connect
them. This is, indeed, correct: When the use existing nodes option is not used and when a node name
is not surrounded by parentheses, then TikZ will actually create a node whose name and text is the node
name:

unsigned integer — d digit E

\usetikzlibrary {graphs}
\tikz \graph [grow right=2cm] { unsigned integer -> d -> digit -> E };

Not quite perfect, but we are getting somewhere. First, let us change the positioning algorithm by saying
grow right sep, which causes new nodes to be placed to the right of the previous nodes with a certain
fixed separation (lem by default). Second, we add some options to make the node “look nice”. Third, note

76

the funny d node above: Ilka tried writing just . there first, but got some error messages. The reason is
that a node cannot be called . in TikZ, so she had to choose a different name — which is not good, since
she wants a dot to be shown! The trick is to put the dot in quotation marks, this allows you to use “quite
arbitrary text” as a node name:

unsigned integer —>®

\usetikzlibrary {graphs,shapes.misc}
\tikz \graph [grow right sep] {
unsigned integer[nonterminal] -> "."[terminal]l -> digit[terminal] -> E[terminall]

g

Now comes the fork to the plus and minus signs. Here, Ilka can use the grouping mechanism of the graph
command to create a split:

unsigned integer —> unsigned integer

\usetikzlibrary {graphs,shapes.misc}

\tikz \graph [grow right sep] {
unsigned integer [nonterminal] ->
A [terminal]l ->

digit [terminal] ->

E [terminal] ->

{
"t [terminall,
" [coordinate],
- [terminal]

} >

ui2/unsigned integer [nonterminall

g

Let us see, what is happening here. We want two unsigned integer nodes, but if we just were to use
this text twice, then TikZ would have noticed that the same name was used already in the current graph
and, being smart (actually too smart in this case), would have created an edge back to the already-created
node. Thus, a fresh name is needed here. However, Ilka also cannot just write unsigned integer2, because
she wants the original text to be shown, after all! The trick is to use a slash inside the node name: In order
to “render” the node, the text following the slash is used instead of the node name, which is the text before
the slash. Alternatively, the as option can be used, which also allows you to specify how a node should be
rendered.

It turns out that Ilka does not need to invent a name like ui2 for a node that she will not reference again
anyway. In this case, she can just leave out the name (write nothing before /), which always stands for a
“fresh, anonymous” node name.

Next, Ilka needs to add some coordinates in between of some nodes where the back-loops should got and
she needs to shift the nodes a bit:

—| unsigned integer —LO—»TlT@*E%I unsigned integer —J—>

7

\usetikzlibrary {arrows.meta,graphs,shapes.misc}
\begin{tikzpicture} [>={Stealth[round]}, thick, black!50, text=black,
every new ->/.style={shorten >=1Ipt},
graphs/every graph/.style={edges=rounded corners}]
\graph [grow right sep, branch down=7mm] {
[coordinate] ->
unsigned integer [nonterminal] --

pl [coordinate] ->
o [terminal] --
p2 [coordinate] ->
digit [terminal] --
p3 [coordinate] --
p4 [coordinate] --—
p5 [coordinate] ->
E [terminal] --
ql [coordinate] ->[vh path]
{ [nodes={yshift="Tmm}]
" [terminall,
q2/ [coordinate],
D=0 [terminall
} => [hv path]
q3 [coordinate] --
/unsigned integer [nonterminal] --
p6 [coordinate] ->
/ [coordinate] ;

pl —->[skip loop=5mm] p4;

p3 —>[skip loop=-5mm] p2;

p5 —>[skip loop=-11mm] p6;
\el};c’i{tikzpicture}

All that remains to be done is to somehow get rid of the strange curves between the E and the unsigned
integer. They are caused by TikZ’s attempt at creating an edge that first goes vertical and then horizontal
but is actually just horizontal. Additionally, the edge should not really be pointed; but it seems difficult to
get rid of this since the other edges from q1, namely to plus and minus should be pointed.

It turns out that there is a nice way of solving this problem: You can specify that a graph is simple.
This means that there can be at most one edge between any two nodes. Now, if you specify an edge twice,
the options of the second specification “win”. Thus, by adding two more lines that “correct” these edges, we
get the final diagram with its complete code:

—| unsigned integer —L©—> 1 @]l unsigned integer T

78

\usetikzlibrary {arrows.meta,graphs,shapes.misc}
\tikz [>={Stealth[round]}, black!50, text=black, thick,

every new —>/.style = {shorten >=1pt},
graphs/every graph/.style {edges=rounded corners},
skip loop/.style {to path={-- ++(0,#1) -/ (\tikztotarget)}},
hv path/.style {to path={-/ (\tikztotarget)}},
vh path/.style {to path={/- (\tikztotarget)}},
nonterminal/.style =1
rectangle, minimum size=6mm, very thick, draw=red!/50!/black!50, top color=uwhite,
bottom color=red!50!/black!20, font=\itshape, text height=1.5exz,text depth=.25ez},
terminal/.style =4
rounded rectangle, minimum size=6mm, very thick, draw=black!/50, top color=uwhite,
bottom color=black!/20, font=\ttfamily, text height=1.5ez, text depth=.25ex},
shape = coordinate

]

\graph [grow right sep, branch down=7mm, simple] {

/ —> unsigned integer[nonterminal] -- p1l -> "." [terminal] -- p2 -> digit[terminal] --
p3 -- p4 -- pb5 -> E[terminal] -- q1 ->[vh path]
{[nodes={yshift=7mm}]

"+"[terminal], g2, "-"[terminall
} => [hv path]
g3 -- /unsigned integer [nonterminal] -- p6 -> /;

pl ->[skip loop=56mm] p4;
p3 —>[skip loop=-5mm] p2;
p5 —>[skip loop=-11mm] p6;

ql -- 92 -- q3; / make these edges plain

79

6 Tutorial: A Lecture Map for Johannes

In this tutorial we explore the tree and mind map mechanisms of TikZ.

Johannes is quite excited: For the first time he will be teaching a course all by himself during the
upcoming semester! Unfortunately, the course is not on his favorite subject, which is of course Theoretical
Immunology, but on Complexity Theory, but as a young academic Johannes is not likely to complain too
loudly. In order to help the students get a general overview of what is going to happen during the course
as a whole, he intends to draw some kind of tree or graph containing the basic concepts. He got this idea
from his old professor who seems to be using these “lecture maps” with some success. Independently of the
success of these maps, Johannes thinks they look quite neat.

6.1 Problem Statement

Johannes wishes to create a lecture map with the following features:
1. It should contain a tree or graph depicting the main concepts.

2. It should somehow visualize the different lectures that will be taught. Note that the lectures are not
necessarily the same as the concepts since the graph may contain more concepts than will be addressed
in lectures and some concepts may be addressed during more than one lecture.

3. The map should also contain a calendar showing when the individual lectures will be given.
4. The aesthetical reasons, the whole map should have a visually nice and information-rich background.

As always, Johannes will have to include the right libraries and set up the environment. Johannes is going
to use the mindmap library and since he wishes to show a calendar, he will also need the calendar library.
In order to put something on a background layer, it seems like a good idea to also include the backgrounds
library.

6.2 Introduction to Trees

The first choice Johannes must make is whether he will organize the concepts as a tree, with root concepts
and concept branches and leaf concepts, or as a general graph. The tree implicitly organizes the concepts,
while a graph is more flexible. Johannes decides to compromise: Basically, the concepts will be organized
as a tree. However, he will selectively add connections between concepts that are related, but which appear
on different levels or branches of the tree.

Johannes starts with a tree-like list of concepts that he feels are important in Computational Complexity:

e Computational Problems

— Problem Measures
— Problem Aspects
— Problem Domains
— Key Problems

e Computational Models

— Turing Machines

— Random-Access Machines
Circuits

— Binary Decision Diagrams
Oracle Machines

— Programming in Logic

e Measuring Complexity

— Complexity Measures

Classifying Complexity
— Comparing Complexity
Describing Complexity

e Solving Problems

80

— Exact Algorithms
Randomization
Fixed-Parameter Algorithms
— Parallel Computation
Partial Solutions

— Approximation

Johannes will surely need to modify this list later on, but it looks good as a first approximation. He
will also need to add a number of subtopics (like lots of complexity classes under the topic “classifying
complexity”), but he will do this as he constructs the map.

Turning the list of topics into a TikZ-tree is easy, in principle. The basic idea is that a node can have
children, which in turn can have children of their own, and so on. To add a child to a node, Johannes can
simply write child {(node)} right after a node. The (node) should, in turn, be the code for creating a
node. To add another node, Johannes can use child once more, and so on. Johannes is eager to try out
this construct and writes down the following:

Computational Complexity

Comput@siomaltiriehin§ibideg Brotytems

AN i imation

\tikz
\node {Computational Complexityl} / 7oot
child { node {Computational Problems}
child { node {Problem Measures} }
child { node {Problem Aspects} }
child { node {Problem Domains} }
child { node {Key Problems} }

}

child { node {Computational Models}
child { node {Turing Machines} }
child { node {Random-Access Machines} }
child { node {Circuits} }
child { node {Binary Decision Diagrams} }
child { node {Oracle Machines} }
child { node {Programming in Logic} }

}

child { node {Measuring Complexity}
child { node {Complexity Measures} }
child { node {Classifying Complexityl} }
child { node {Comparing Complexityl} }
child { node {Describing Complexity} }

}
child { node {Solving Problems}
child { node {Exact Algorithms} }
child { node {Randomization} }
child { node {Fixed-Parameter Algorithms} }
child { node {Parallel Computation} }
child { node {Partial Solutions} }
child { node {Approximation} }
};

Well, that did not quite work out as expected (although, what, exactly, did one expect?). There are two
problems:

1. The overlap of the nodes is due to the fact that TikZ is not particularly smart when it comes to placing
child nodes. Even though it is possible to configure TikZ to use rather clever placement methods, TikZ
has no way of taking the actual size of the child nodes into account. This may seem strange but the
reason is that the child nodes are rendered and placed one at a time, so the size of the last node is not
known when the first node is being processed. In essence, you have to specify appropriate level and
sibling node spacings “by hand”.

2. The standard computer-science-top-down rendering of a tree is rather ill-suited to visualizing the
concepts. It would be better to either rotate the map by ninety degrees or, even better, to use some

81

sort of circular arrangement.

Johannes redraws the tree, but this time with some more appropriate options set, which he found more
or less by trial-and-error:

Approximation

/Partial Solutions
—_——— P i

st Pl e —— — arallel Computation

Fixed-Parameter Algorithms

—_—
\ Randomization

Exact Algorithms

Describing Complexity
. . Comparing Complexity
Measuring Complexity Classifying Complexity

\
/ Complexity Measures

Computational Complexity Programming in Logic

\ / Oracle Machines

———— Binary D Di
Computational Models —— inary Decision Diagrams
Circuits

R
\
\R@dom—AcceSS Machines

Turing Machines

Key Problems
/ .
Problem Domains

Problem Aspects
Problem Measures

Computational Problems

\usetikzlibrary {trees}
\tikz [font=\footnotesize,
grow=right, level 1/.style={sibling distance=6em},
level 2/.style={sibling distance=lem}, level distance=5cm]
\node {Computational Complexityl} / 7oot
child { node {Computational Problems}
child { node {Problem Measures} }
child { node {Problem Aspects} }
. % as before

Still not quite what Johannes had in mind, but he is getting somewhere.

For configuring the tree, two parameters are of particular importance: The level distance tells TikZ
the distance between (the centers of) the nodes on adjacent levels or layers of a tree. The sibling distance
is, as the name suggests, the distance between (the centers of) siblings of the tree.

You can globally set these parameters for a tree by simply setting them somewhere before the tree starts,
but you will typically wish them to be different for different levels of the tree. In this case, you should set
styles like level 1 or level 2. For the first level of the tree, the level 1 style is used, for the second level
the level 2 style, and so on. You can also set the sibling and level distances only for certain nodes by
passing these options to the child command as options. (Note that the options of a node command are
local to the node and have no effect on the children. Also note that it is possible to specify options that do
have an effect on the children. Finally note that specifying options for children “at the right place” is an
arcane art and you should peruse Section 21.4 on a rainy Sunday afternoon, if you are really interested.)

The grow key is used to configure the direction in which a tree grows. You can change growth direction
“in the middle of a tree” simply by changing this key for a single child or a whole level. By including the
trees library you also get access to additional growth strategies such as a “circular” growth:

82

Describin;
Fixed- Randomization g

Exact Complexity Comparing
LG, Algorithms Complexit
Algorithms & p Y
Parallel Classifying
Computation Complexity
i \ Measurin i
Part.lal — Solving Problems g _ Complexity
Solutions / \ Comp]ex1ty Measures
Approximation Computatlonal
Complexity Programming
/ \ in Logic
Problem _ Computational Computational Oracle
Measures Problems Models Machines
Problem Bm.a.r Y
Aspects Decision
P Diagrams
Problem Turing Circuit
Domains Machines Random- rewts
Key Problems Access

Machines

\usetikzlibrary {trees}
\tikz [text width=2.7cm, align=flush center,

grow cyclic,

level 1/.style={level distance=2.5cm,sibling angle=90},

level 2/.style={text width=2cm, font=\footnotesize, level distance=3cm,sibling angle=30}]

\node [font=\bfseries] {Computational Complexity} / 7oot
child { node {Computational Problems}
child { node {Problem Measures} }
child { node {Problem Aspects} }
. % as before

Johannes is pleased to learn that he can access and manipulate the nodes of the tree like any nor-
mal node. In particular, he can name them using the name= option or the ({name)) notation and he
can use any available shape or style for the trees nodes. He can connect trees later on using the nor-
mal \draw (some node) -- (another node); syntax. In essence, the child command just computes an
appropriate position for a node and adds a line from the child to the parent node.

6.3 Creating the Lecture Map

Johannes now has a first possible layout for his lecture map. The next step is to make it “look nicer”. For
this, the mindmap library is helpful since it makes a number of styles available that will make a tree look like
a nice “mind map” or “concept map”.

The first step is to include the mindmap library, which Johannes already did. Next, he must add one of the
following options to a scope that will contain the lecture map: mindmap or large mindmap or huge mindmap.
These options all have the same effect, except that for a large mindmap the predefined font size and node
sizes are somewhat larger than for a standard mindmap and for a huge mindmap they are even larger. So, a
large mindmap does not necessarily need to have a lot of concepts, but it will need a lot of paper.

The second step is to add the concept option to every node that will, indeed, be a concept of the mindmap.
The idea is that some nodes of a tree will be real concepts, while other nodes might just be “simple children”.
Typically, this is not the case, so you might consider saying every node/.style=concept.

The third step is to set up the sibling angle (rather than a sibling distance) to specify the angle between
sibling concepts.

83

Fixed- Describing Comparing

Parameter Randomization Com- Com-
Algorithms plexity plexity
Parallel Exact Classifying
Con}pu— Algorithms COIP_
tation plexity
Solving Measuring
Problems Complexity
Partial Cl]:ri_
Solutions I\/i)ea)s(lllr};s
Approximation Computational
Complexity Programming
in Logic
Problem Oracle
Measures Machines
Computational Computational
Problems Models
Bi
Problem Turing DeISZ;gn
Aspects Machines Di
iagrams
Random-
Probh‘em Key Access Circuits
Domains Problems Machines

\usetikzlibrary {mindmap}
\tikz [mindmap, every node/.style=concept, concept color=black!20,
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90},
level 2/.append style={level distance=3cm,sibling angle=45}]
\node [root concept] {Computational Complexityl} / root
child { node {Computational Problems}
child { node {Problem Measures} }
child { node {Problem Aspects} }
. % as before

When Johannes typesets the above map, TEX (rightfully) starts complaining about several overfull boxes
and, indeed, words like “Randomization” stretch out beyond the circle of the concept. This seems a bit
mysterious at first sight: Why does TEX not hyphenate the word? The reason is that TEX will never
hyphenate the first word of a paragraph because it starts looking for “hyphenatable” letters only after a
so-called glue. In order to have TEX hyphenate these single words, Johannes must use a bit of evil trickery:
He inserts a \hskipOpt before the word. This has no effect except for inserting an (invisible) glue before
the word and, thereby, allowing TEX to hyphenate the first word also. Since Johannes does not want to add
\hskipOpt inside each node, he uses the execute at begin node option to make TikZ insert this text with

every node.

84

\usetikzlibrary {mindmap}

\begin{tikzpicture}
Fixed- .
. Bemdem [mindmap, . '
arameter ization every node/.style={concept, execute at begin node=\hskipOpt},

Algorithms concept color=black!20,
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90},
level 2/.append style={level distance=3cm,sibling angle=45}]
2 \clip (-1,2) rectangle ++ (-4,5);
\node [root concept] {Computational Complexityl} / root
child { node {Computational Problems}

Solving child { node {Problem Measures} }
Problems child { node {Problem Aspects} }
. /% as before
\end{tikzpicture}

In the above example a clipping was used to show only part of the lecture map, in order to save space.
The same will be done in the following examples, we return to the complete lecture map at the end of this
tutorial.

Johannes is now eager to colorize the map. The idea is to use different colors for different parts of the
map. He can then, during his lectures, talk about the “green” or the “red” topics. This will make it easier for
his students to locate the topic he is talking about on the map. Since “computational problems” somehow
sounds “problematic”, Johannes chooses red for them, while he picks green for the “solving problems”. The
topics “measuring complexity” and “computational models” get more neutral colors; Johannes picks orange
and blue.

To set the colors, Johannes must use the concept color option, rather than just, say, node [fill=red].
Setting just the fill color to red would, indeed, make the node red, but it would just make the node red
and not the bar connecting the concept to its parent and also not its children. By comparison, the special
concept color option will not only set the color of the node and its children, but it will also (magically)
create appropriate shadings so that the color of a parent concept smoothly changes to the color of a child
concept.

For the root concept Johannes decides to do something special: He sets the concept color to black, sets
the line width to a large value, and sets the fill color to white. The effect of this is that the root concept
will be encircled with a thick black line and the children are connected to the central concept via bars.

' \usetikzlibrary {mindmap}
\begin{tikzpicture}
[mindmap,
every node/.style={concept, execute at begin node=\hskipOpt},
root concept/.append style={
concept color=black, fill=white, line width=Iez, text=black},
text=white,
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90},
level 2/.append style={level distance=3cm,sibling angle=45}]
\clip (0,-1) rectangle ++(4,5);
\node [root concept] {Computational Complexityl} / root
child [concept color=7ed] { node {Computational Problems}
child { node {Problem Measures} }
. % as before

tational
lexity

}
child [concept color=blue] { node {Computational Models}
child { node {Turing Machines} }
. % as before
}
child [concept color=orange]l { node {Measuring Complexity}
child { node {Complexity Measures} }
. % as before
}
child [concept color=green!/50!black] { node {Solving Problems}
child { node {Exact Algorithms} }
. /% as before
};
\end{tikzpicture}

Johannes adds three finishing touches: First, he changes the font of the main concepts to small caps.
Second, he decides that some concepts should be “faded”, namely those that are important in principle

85

and belong on the map, but which he will not talk about in his lecture. To achieve this, Johannes de-
fines four styles, one for each of the four main branches. These styles (a) set up the correct concept
color for the whole branch and (b) define the faded style appropriately for this branch. Third, he adds a
circular drop shadow, defined in the shadows library, to the concepts, just to make things look a bit more
fancy.

Fixed-
Parameter
Algorithms

Random- Comparing
ization Complexity

Parallel
Compu-
tation

Classifying
Complexity
MEASURING
Com-
PLEXITY

SOLVING
PROBLEMS

Partial Complexity
Solutions Measures

Approx-

imation COMPUTATIONAL
COMPLEXITY

Program-

Problem
Mea
COMPU- COMPU-
TATIONAL TATIONAL
PROBLEMS MODELS

Binary
Decision
Diagrams

Problem Turing
Aspects Machines

Random-
Access Circuits
Machines

Problem Key Prob-
Domains lems

86

\usetikzlibrary {mindmap,shadows}
\begin{tikzpicture} [mindmap]
\begin{scopel}[

every node/.style={concept, circular drop shadow,execute at begin node=\hskipOpt},
root concept/.append style={

concept color=black, fill=white, line width=Ilez, text=black, font=\large\scshapel},
text=white,
computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
solving problems/.style={concept color=green!/50!black,faded/.style={concept color=green!/50!black!50}},
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]
\node [root concept] {Computational Complexity} / root

child [computational problems] { node {Computational Problems}

child { node {Problem Measures} }
child { node {Problem Aspects} }
child [faded] { node {Problem Domains} }
child { node {Key Problems} }
}
child [computational models] { node {Computational Models}
child { node {Turing Machines} }

child [faded] { node {Random-Access Machines} }

\end{scope}
\end{tikzpicture}

6.4 Adding the Lecture Annotations

Johannes will give about a dozen lectures during the course “computational complexity”. For each lecture
he has compiled a (short) list of learning targets that state what knowledge and qualifications his students
should acquire during this particular lecture (note that learning targets are not the same as the contents of
a lecture). For each lecture he intends to put a little rectangle on the map containing these learning targets
and the name of the lecture, each time somewhere near the topic of the lecture. Such “little rectangles” are

called “annotations” by the mindmap library.

In order to place the annotations next to the concepts, Johannes must assign names to the nodes of the
concepts. He could rely on TikZ’s automatic naming of the nodes in a tree, where the children of a node
named root are named root-1, root-2, root-3, and so on. However, since Johannes is not sure about
the final order of the concepts in the tree, it seems better to explicitly name all concepts of the tree in the

following manner:

\node [root concept] (Computational Complexity) {Computational Complexity}
child [computational problems] { node (Computational Problems) {Computational Problems}

}

The annotation style of the mindmap library mainly sets up a rectangular shape of appropriate size.

child { node (Problem Measures) {Problem Measures} }
child { node (Problem Aspects) {Problem Aspects} }
child [faded] { node (Problem Domains) {Problem Domains} }
child { node (Key Problems) {Key Problems} }

Johannes configures the style by defining every annotation appropriately.

87

\usetikzlibrary {mindmap,shadows}
\begin{tikzpicture} [mindmap]
\clip (-5,-5) rectangle ++ (4,5);

\begin{scopel} [
every node/.style={concept, circular drop shadow, ...}] 7 as before
\node [root concept] (Computational Complexity) C % as before
\end{scope}

\begin{scopel} [every annotation/.style={fill=black!/40}]
\node [annotation, above] at (Computational Problems.north) {
Lecture 1: Computational Problems
\begin{itemize}
\item Knowledge of several key problems
\item Knowledge of problem encodings
\item Being able to formalize problems
\end{itemize}
};
\end{scope}
\end{tikzpicture}

Well, that does not yet look quite perfect. The spacing or the {itemize} is not really appropriate and
the node is too large. Johannes can configure these things “by hand”, but it seems like a good idea to define
a macro that will take care of these things for him. The “right” way to do this is to define a \lecture macro
that takes a list of key—value pairs as argument and produces the desired annotation. However, to keep
things simple, Johannes’ \lecture macro simply takes a fixed number of arguments having the following
meaning: The first argument is the number of the lecture, the second is the name of the lecture, the third
are positioning options like above, the fourth is the position where the node is placed, the fifth is the list of
items to be shown, and the sixth is a date when the lecture will be held (this parameter is not yet needed,
we will, however, need it later on).

\def\lecture#1#2#3#4#5#6{

\node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm] at (#4) {
Lecture #1: \textcolor{orangel}{\textbf{#2}}
\list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt

\parskip=0pt\labelwidth=8pt\leftmargin=8pt
\itemindent=0pt\labelsep=2pt}
#5
\endlist
};
}

\usetikzlibrary {mindmap,shadows}
\begin{tikzpicture} [mindmap,every annotation/.style={fill=white}]
\clip (-5,-5) rectangle ++ (4,5);

\begin{scopel}[
every node/.style={concept, circular drop shadow, ... % as before
\node [root concept] (Computational Complexity) ... % as before
\end{scope}

\lecture{1}{Computational Problems}{above,xshift=-3mm}
{Computational Problems.north}{
\item Knowledge of several key problems
\item Knowledge of problem encodings
\item Being able to formalize problems
}{2009-04-08}
\end{tikzpicture}

Lecture 1: Computationa 1
Problem

~ Knowledge of several key problems
~ Knowledge of problem encodings

~ Being able to formalize problems

In the same fashion Johannes can now add the other lecture annotations. Obviously, Johannes will
have some trouble fitting everything on a single A4-sized page, but by adjusting the spacing and some
experimentation he can quickly arrange all the annotations as needed.

6.5 Adding the Background

Johannes has already used colors to organize his lecture map into four regions, each having a different color.
In order to emphasize these regions even more strongly, he wishes to add a background coloring to each of
these regions.

Adding these background colors turns out to be more tricky than Johannes would have thought. At
first sight, what he needs is some sort of “color wheel” that is blue in the lower right direction and then

88

changes smoothly to orange in the upper right direction and then to green in the upper left direction and so
on. Unfortunately, there is no easy way of creating such a color wheel shading (although it can be done, in
principle, but only at a very high cost, see page 777 for an example).

Johannes decides to do something a bit more basic: He creates four large rectangles, one for each of the
four quadrants around the central concept, each colored with a light version of the quadrant. Then, in order
to “smooth” the change between adjacent rectangles, he puts four shadings on top of them.

Since these background rectangles should go “behind” everything else, Johannes puts all his background
stuff on the background layer.

In the following code, only the central concept is shown to save some space:

\usetikzlibrary {backgrounds,mindmap,shadows}
\begin{tikzpicture}[
mindmap,
concept color=black,
root concept/.append style={
concept,
circular drop shadow,
fill=white, line width=1Iez,
text=black, font=\large\scshapelt
]

\clip (-1.5,-5) rectangle ++(4,10);

\node [root concept] (Computational Complexity) {Computational Complexity};
JOMPUTATIONAL
\begin{pgfonlayer}{background}

\clip (-1.5,-5) rectangle ++(4,10);

COMPLEXITY

\colorlet{upperleft}{green!50!black!25}
\colorlet{upperright}{orange!25}
\colorlet{lowerleft}{red!25}
\colorlet{lowerright}{blue!25}

% The large rectangles:
\fill [upperleft] (Computational Complexity) rectangle ++(-20,20);
\fill [upperright] (Computational Complexity) rectangle ++(20,20);
\fill [lowerleft] (Computational Complexity) rectangle ++(-20,-20);
\fill [lowerright] (Computational Complexity) rectangle ++(20,-20);

% The shadings:

\shade [left color=upperleft,right color=upperright]
([xshift=-1cm]Computational Complexity) rectangle ++(2,20);

\shade [left color=lowerleft,right color=Llowerright]
([xshift=-1cm]Computational Complexity) rectangle ++(2,-20);

\shade [top color=upperleft,bottom color=Llowerleft]
([yshift=-1cm]Computational Complexity) rectangle ++(-20,2);

\shade [top color=upperright,bottom color=lowerright]
([yshift=-1cm]Computational Complexity) rectangle ++(20,2);

\end{pgfonlayer}
\end{tikzpicture}

6.6 Adding the Calendar

Johannes intends to plan his lecture rather carefully. In particular, he already knows when each of his
lectures will be held during the course. Naturally, this does not mean that Johannes will slavishly follow
the plan and he might need longer for some subjects than he anticipated, but nevertheless he has a detailed
plan of when which subject will be addressed.

Johannes intends to share this plan with his students by adding a calendar to the lecture map. In addition
to serving as a reference on which particular day a certain topic will be addressed, the calendar is also useful
to show the overall chronological order of the course.

In order to add a calendar to a TikZ graphic, the calendar library is most useful. The library provides the
\calendar command, which takes a large number of options and which can be configured in many ways to
produce just about any kind of calendar imaginable. For Johannes’ purposes, a simple day list downward
will be a nice option since it produces a list of days that go “downward”.

89

1 \usetikzlibrary {calendar}

\tiny

\begin{tikzpicture}

\calendar [day list downward,
name=cal,
dates=2009-04-01 to 2009-04-14]
if (weekend)
[black!25] ;
13 \end{tikzpicture}
14

w N

[SEN-NIEN e

-

Using the name option, we gave a name to the calendar, which will allow us to reference the nodes that
make up the individual days of the calendar later on. For instance, the rectangular node containing the 1
that represents April 1st, 2009, can be referenced as (cal-2009-04-01). The dates option is used to specify
an interval for which the calendar should be drawn. Johannes will need several months in his calendar, but
the above example only shows two weeks to save some space.

Note the if (weekend) construct. The \calendar command is followed by options and then by if-
statements. These if-statements are checked for each day of the calendar and when a date passes this test,
the options or the code following the if-statement is executed. In the above example, we make weekend
days (Saturdays and Sundays, to be precise) lighter than normal days. (Use your favorite calendar to check
that, indeed, April 5th, 2009, is a Sunday.)

As mentioned above, Johannes can reference the nodes that are used to typeset days. Recall that his
\lecture macro already got passed a date, which we did not use, yet. We can now use it to place the
lecture’s title next to the date when the lecture will be held:

\def\lecture#1#2#3#4#5#6{

7% As before:

\node [annotation, #3, scale=0.65, text width=/cm, inner sep=2mm] at (#4) {
Lecture #1: \textcolor{orange}{\textbf{#2}}
\list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt

\parskip=0Opt\labelwidth=8pt\leftmargin=8pt
\itemindent=0pt\labelsep=2pt}
#5
\endlist
i

7 New:

\node [anchor=base west] at (cal-#6.base east) {\textcolor{orangel}{\textbf{#2}}};
I

Johannes can now use this new \lecture command as follows (in the example, only the new part of the
definition is used):

1 \usetikzlibrary {calendar}
\tiny
\begin{tikzpicture}
o \calendar [day list downward,
7 name=cal,
s dates=2009-04-01 to 2009-04-14]
o if (weekend)
[black!25] ;

e % As before:

\lecture{1}{Computational Problems}{above,xshift=-3mm}

{Computational Problems.north}{
\item Knowledge of several key problems
\item Knowledge of problem encodings
\item Being able to formalize problems

+{2009-04-08}

\end{tikzpicture}

As a final step, Johannes needs to add a few more options to the calendar command: He uses the
month text option to configure how the text of a month is rendered (see Section 47 for details) and then
typesets the month text at a special position at the beginning of each month.

90

April 2009 \usetikzlibrary {calendar}
1 \tiny
2 \begin{tikzpicture}

\calendar [day list downward,
month text=\/mt\ \/y0,
3 month yshift=3.5em,
8 Computational Problems name=cal,
g dates=2009-04-01 to 2009-05-01]
if (weekend)

19 [black!25]
14 if (day of month=1) {
12 Cempriatizm] Mec \node at (Opt,1.5em) [anchor=base west] {\small\tikzmonthtext};
17 g
20 \lecture{1}{Computational Problems}{above,xshift=-3mm}
s {Computational Problems.north}{
23 \item Knowledge of several key problems
2 \item Knowledge of problem encodings
\item Being able to formalize problems
g; }{2009-04-08}
29
30 \lecture{2}{Computational Models}{above,xshift=-3mm}
May 2009 {Computational Models.north}{

\item Knowledge of Turing machines
\item Being able to compare the computational power of different
models
}+{2009-04-15}
\end{tikzpicture}

6.7 The Complete Code

Putting it all together, Johannes gets the following code:
First comes the definition of the \lecture command:

\def\lecture#1#2#3#4#5#6{
7 As before:
\node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm, fill=whitel at (#4) {
Lecture #1: \textcolor{orange}{\textbf{#2}}
\list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
\parskip=0pt\labelwidth=8pt\leftmargin=8pt
\itemindent=0pt\labelsep=2pt}

#5

\endlist

I8

7 New:

\node [anchor=base west] at (cal-#6.base east) {\textcolor{orange}{\textbf{#2}}};

This is followed by the main mindmap setup...

\noindent
\begin{tikzpicture}
\begin{scope}[
mindmap,
every node/.style={concept, circular drop shadow,execute at begin node=\hskipOpt},
root concept/.append style={
concept color=black,
fill=white, line width=1ez,
text=black, font=\large\scshapel,
text=white,
computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!/50}},
solving problems/.style={concept color=green!/50!black,faded/.style={concept color=green!/50!black!50}},
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]

..and contents:

91

\node [root concept] (Computational Complexity) {Computational Complexityl} / root
child [computational problems] { node [yshift=-Zcml] (Computational Problems) {Computational Problems}
{ node (Problem Measures) {Problem Measures} }
{ node (Problem Aspects) {Problem Aspects} }
child [faded] { node (problem Domains) {Problem Domains} }
{ node (Key Problems) {Key Problems} }

child
child

child [computational models] { node [yshift=-Icm] (Computational Models) {Computational Models}

node
node
node
node
node
node

(Turing Machines) {Turing Machines} }

(Random-Access Machines) {Random-Access Machines} }
(Circuits) {Circuits} }

(Binary Decision Diagrams) {Binary Decision Diagrams} }
(Oracle Machines) {Oracle Machines} }

(Programming in Logic) {Programming in Logic} }

child [measuring complexity] { node [yshift=Icm] (Measuring Complexity) {Measuring Complexityl}

node
node
node
node

(Complexity Measures) {Complexity Measures} }
(Classifying Complexity) {Classifying Complexity} }
(Comparing Complexity) {Comparing Complexityl} }
(Describing Complexity) {Describing Complexityl} }

child [solving problems] { node [yshift=Icm] (Solving Problems) {Solving Problems}

child
}
child {
child [faded] {
child {
child [faded] {
child {
child {
}
child {
child {
child {
child [faded] {
}
child {
child {
child {
child {
child {
child {
i
\end{scope}

node
node
node
node
node
node

(Exact Algorithms) {Exact Algorithms} }

(Randomization) {Randomization} }

(Fixed-Parameter Algorithms) {Fixed-Parameter Algorithms} }
(Parallel Computation) {Parallel Computation} }

(Partial Solutions) {Partial Solutions} }

(Approximation) {Approximation} }

Now comes the calendar code:

\tiny

\calendar [day list downward,
month text=\/mt\ \/y0,
month yshift=3.5em,

name=cal,

at={(-.5\textwidth-5mm, .5\ textheight-1cm)},
dates=2009-04-01 to 2009-06-last]

if (weekend)
[black!25]

if (day of month=1) {
\node at (Opt,1.5em) [anchor=base west] {\small\tikzmonthtext};

Iré

The lecture annotations:

\lecture{1}{Computational Problems}{above,xshift=-5mm,yshift=5mm}{Computational Problems.north}{
\item Knowledge of several key problems
\item Knowledge of problem encodings
\item Being able to formalize problems

}+{2009-04-08}

\lecture{2}{Computational Models}{above left}
{Computational Models.west}{
\item Knowledge of Turing machines
\item Being able to compare the computational power of different

models
}{2009-04-15}

Finally, the background:

92

\begin{pgfonlayer}{background}
\clip[xshift=-Icm] (-.5\textwidth,-.5\textheight) rectangle ++(\textwidth,\textheight);

\colorlet{upperleft}{green!50!black!25}
\colorlet{upperright}{orange!25}
\colorlet{lowerleft}{red!25}
\colorlet{lowerright}{blue!25}

/% The large rectangles:

\fill [upperleft] (Computational Complexity) rectangle ++(-20,20);
\fill [upperright] (Computational Complexity) rectangle ++(20,20);
\fill [lowerleft] (Computational Complexity) rectangle ++(-20,-20);
\fill [lowerright] (Computational Complexity) rectangle ++(20,-20);

% The shadings:

\shade [left color=upperleft,right color=upperright]
([xshift=-1cm]Computational Complexity) rectangle ++(2,20);

\shade [left color=lowerleft,right color=_lowerright]
([xshift=-1cm]Computational Complexity) rectangle ++(2,-20);

\shade [top color=upperleft,bottom color=lowerleft]
([yshift=-1cm]Computational Complexity) rectangle ++(-20,2);

\shade [top color=upperright,bottom color=lowerright]
([yshift=-1cm]Computational Complexity) rectangle ++(20,2);

\end{pgfonlayer}
\end{tikzpicture}

The next page shows the resulting lecture map in all its glory (it would be somewhat more glorious, if
there were more lecture annotations, but you should get the idea).

93

0o G

SN

8

10

12

15
16
17

19

22
23
24
25
26

29
30

April 2009

May 2009

June 2009

Parallel
Compu-
tation

Partial
Solutions

Problem
Measures

Problem
Aspects

Algorithms

Fixed-
Parameter

SOLVING

PROBLEMS

Approx-
imation

Lecture 1

ge of several key problems
swledge of problem encodings
~ Being able to formalize problems

COMPU-
TATIONAL
PROBLEMS

Key Prob-
lems

Random-
ization

Exact
Algorithms

COMPUTATIONAL
COMPLEXITY

Lecture 2:
Knowledge of Turing machines
Being able to compare the
computational power of different
models

Program-

COMPU-

TIONAL

MODELS

Turing
Machines

Random-
Access
Machines

94

Circuits

Machines

Binary
Decision
Diagrams

7 Guidelines on Graphics

The present section is not about PGF or TikZ, but about general guidelines and principles concerning the
creation of graphics for scientific presentations, papers, and books.

The guidelines in this section come from different sources. Many of them are just what I would like to
claim is “common sense”, some reflect my personal experience (though, hopefully, not my personal prefer-
ences), some come from books (the bibliography is still missing, sorry) on graphic design and typography.
The most influential source are the brilliant books by Edward Tufte. While I do not agree with everything
written in these books, many of Tufte’s arguments are so convincing that I decided to repeat them in the
following guidelines.

The first thing you should ask yourself when someone presents a bunch of guidelines is: Should I really
follow these guidelines? This is an important question, because there are good reasons not to follow general
guidelines. The person who set up the guidelines may have had other objectives than you do. For example,
a guideline might say “use the color red for emphasis”. While this guideline makes perfect sense for, say,
a presentation using a projector, red “color” has the opposite effect of “emphasis” when printed using a
black-and-white printer. Guidelines were almost always set up to address a specific situation. If you are not
in this situation, following a guideline can do more harm than good.

The second thing you should be aware of is the basic rule of typography is: “Every rule can be broken, as
long as you are aware that you are breaking a rule.” This rule also applies to graphics. Phrased differently,
the basic rule states: “The only mistakes in typography are things done in ignorance.” When you are aware
of a rule and when you decide that breaking the rule has a desirable effect, break the rule.

7.1 Planning the Time Needed for the Creation of Graphics

When you create a paper with numerous graphics, the time needed to create these graphics becomes an
important factor. How much time should you calculate for the creation of graphics?

As a general rule, assume that a graphic will need as much time to create as would a text of the same
length. For example, when I write a paper, I need about one hour per page for the first draft. Later, I
need between two and four hours per page for revisions. Thus, I expect to need about half an hour for the
creation of a first draft of a half page graphic. Later on, I expect another one to two hours before the final
graphic is finished.

In many publications, even in good journals, the authors and editors have obviously invested a lot of time
on the text, but seem to have spend about five minutes to create all of the graphics. Graphics often seem to
have been added as an “afterthought” or look like a screen shot of whatever the authors’s statistical software
shows them. As will be argued later on, the graphics that programs like GNUPLOT produce by default are
of poor quality.

Creating informative graphics that help the reader and that fit together with the main text is a difficult,
lengthy process.

e Treat graphics as first-class citizens of your papers. They deserve as much time and energy as the text
does. Indeed, the creation of graphics might deserve even more time than the writing of the main text
since more attention will be paid to the graphics and they will be looked at first.

e Plan as much time for the creation and revision of a graphic as you would plan for text of the same
size.

o Difficult graphics with a high information density may require even more time.

e Very simple graphics will require less time, but most likely you do not want to have “very simple
graphics” in your paper, anyway; just as you would not like to have a “very simple text” of the same
size.

7.2 Workflow for Creating a Graphic

When you write a (scientific) paper, you will most likely follow the following pattern: You have some
results/ideas that you would like to report about. The creation of the paper will typically start with
compiling a rough outline. Then, the different sections are filled with text to create a first draft. This draft
is then revised repeatedly until, often after substantial revision, a final paper results. In a good journal
paper there is typically not be a single sentence that has survived unmodified from the first draft.

Creating a graphics follows the same pattern:

95

e Decide on what the graphic should communicate. Make this a conscious decision, that is, determine
“What is the graphic supposed to tell the reader?”

o Create an “outline”, that is, the rough overall “shape” of the graphic, containing the most crucial
elements. Often, it is useful to do this using pencil and paper.

e Fill out the finer details of the graphic to create a first draft.

e Revise the graphic repeatedly along with the rest of the paper.

7.3 Linking Graphics With the Main Text

Graphics can be placed at different places in a text. Either, they can be inlined, meaning they are somewhere
“in the middle of the text” or they can be placed in stand-alone “figures”. Since printers (the people) like to
have their pages “filled”, (both for aesthetic and economic reasons) stand-alone figures may traditionally be
placed on pages in the document far away from the main text that refers to them. KWTEX and TEX tend to
encourage this “drifting away” of graphics for technical reasons.

When a graphic is inlined, it will more or less automatically be linked with the main text in the sense
that the labels of the graphic will be implicitly explained by the surrounding text. Also, the main text will
typically make it clear what the graphic is about and what is shown.

Quite differently, a stand-alone figure will often be viewed at a time when the main text that this graphic
belongs to either has not yet been read or has been read some time ago. For this reason, you should follow
the following guidelines when creating stand-alone figures:

o Stand-alone figures should have a caption than should make them “understandable by themselves”.

For example, suppose a graphic shows an example of the different stages of a quicksort algorithm. Then
the figure’s caption should, at the very least, inform the reader that “the figure shows the different
stages of the quicksort algorithm introduced on page xyz”. and not just “Quicksort algorithm”.

e A good caption adds as much context information as possible. For example, you could say: “The figure
shows the different stages of the quicksort algorithm introduced on page xyz. In the first line, the pivot
element 5 is chosen. This causes...” While this information can also be given in the main text, putting
it in the caption will ensure that the context is kept. Do not feel afraid of a 5-line caption. (Your
editor may hate you for this. Consider hating them back.)

e Reference the graphic in your main text as in “for an example of quicksort ‘in action’, see Figure 2.1
on page xyz’.

e Most books on style and typography recommend that you do not use abbreviations as in “Fig. 2.1”
but write “Figure 2.1”.

The main argument against abbreviations is that “a period is too valuable to waste it on an abbrevi-
ation”. The idea is that a period will make the reader assume that the sentence ends after “Fig” and
it takes a “conscious backtracking” to realize that the sentence did not end after all.

The argument in favor of abbreviations is that they save space.

Personally, I am not really convinced by either argument. On the one hand, I have not yet seen any
hard evidence that abbreviations slow readers down. On the other hand, abbreviating all “Figure” by
“Fig.” is most unlikely to save even a single line in most documents. I avoid abbreviations.

7.4 Consistency Between Graphics and Text

Perhaps the most common “mistake” people do when creating graphics (remember that a “mistake” in design
is always just “ignorance”) is to have a mismatch between the way their graphics look and the way their
text looks.

It is quite common that authors use several different programs for creating the graphics of a paper. An
author might produce some plots using GNUPLOT, a diagram using XFIG, and include an .eps graphic a
coauthor contributed using some unknown program. All these graphics will, most likely, use different line
widths, different fonts, and have different sizes. In addition, authors often use options like [height=5cm]
when including graphics to scale them to some “nice size”.

If the same approach were taken to writing the main text, every section would be written in a different
font at a different size. In some sections all theorems would be underlined, in another they would be printed

96

all in uppercase letters, and in another in red. In addition, the margins would be different on each page.
Readers and editors would not tolerate a text if it were written in this fashion, but with graphics they often
have to.

To create consistency between graphics and text, stick to the following guidelines:

e Do not scale graphics.

This means that when generating graphics using an external program, create them “at the right size”.
o Use the same font(s) both in graphics and the body text.

e Use the same line width in text and graphics.

The “line width” for normal text is the width of the stem of letters like T. For TEX, this is usually
0.4 pt. However, some journals will not accept graphics with a normal line width below 0.5 pt.

e When using colors, use a consistent color coding in the text and in graphics. For example, if red is
supposed to alert the reader to something in the main text, use red also in graphics for important parts
of the graphic. If blue is used for structural elements like headlines and section titles, use blue also for
structural elements of your graphic.

However, graphics may also use a logical intrinsic color coding. For example, no matter what colors
you normally use, readers will generally assume, say, that the color green as “positive, go, ok” and red
as “alert, warning, action”.

Creating consistency when using different graphic programs is almost impossible. For this reason, you
should consider sticking to a single graphics program.

7.5 Labels in Graphics

Almost all graphics will contain labels, that is, pieces of text that explain parts of the graphics. When
placing labels, stick to the following guidelines:

e Follow the rule of consistency when placing labels. You should do so in two ways: First, be consistent
with the main text, that is, use the same font as the main text also for labels. Second, be consistent
between labels, that is, if you format some labels in some particular way, format all labels in this way.

e In addition to using the same fonts in text and graphics, you should also use the same notation. For
example, if you write 1/2 in your main text, also use “1/2” as labels in graphics, not “0.5”. A 7 is a
“m” and not “3.141”". Finally, e™'7 is “e™"™” not “—1”, let alone “-1”.

e Labels should be legible. They should not only have a reasonably large size, they also should not be
obscured by lines or other text. This also applies to labels of lines and text behind the labels.

e Labels should be “in place”. Whenever there is enough space, labels should be placed next to the
thing they label. Ounly if necessary, add a (subdued) line from the label to the labeled object. Try to
avoid labels that only reference explanations in external legends. Reader have to jump back and forth
between the explanation and the object that is described.

o Consider subduing “unimportant” labels using, for example, a gray color. This will keep the focus on
the actual graphic.

7.6 Plots and Charts

One of the most frequent kind of graphics, especially in scientific papers, are plots. They come in a large
variety, including simple line plots, parametric plots, three dimensional plots, pie charts, and many more.

Unfortunately, plots are notoriously hard to get right. Partly, the default settings of programs like
GNUPLOT or Excel are to blame for this since these programs make it very convenient to create bad plots.

The first question you should ask yourself when creating a plot is: Are there enough data points to merit
a plot? If the answer is “not really”, use a table.

A typical situation where a plot is unnecessary is when people present a few numbers in a bar diagram.
Here is a real-life example: At the end of a seminar a lecturer asked the participants for feedback. Of the 50
participants, 30 returned the feedback form. According to the feedback, three participants considered the
seminar “very good”, nine considered it “good”, ten “ok”, eight “bad”, and no one thought that the seminar
was “very bad”.

97

A simple way of summing up this information is the following table:

Rating given Participants (out of 50) Percentage
who gave this rating

“very good” 3 6%
“good” 9 18%
“ok” 10 20%
“bad” 8 16%
“very bad” 0 0%
none 20 40%

What the lecturer did was to visualize the data using a 3D bar diagram. It looked like this (except

that

in reality the numbers where typeset using some extremely low-resolution bitmap font and were near-

unreadable):

1.
2.

s

100
80
60
40
20

0

good
ok
bad

o)
o)
)
)
)
3
s

Both the table and the “plot” have about the same size. If your first thought is “the graphic looks nicer
than the table”, try to answer the following questions based on the information in the table or in the graphic:

very bad

How many participants were there?

How many participants returned the feedback form?

What percentage of the participants returned the feedback form?

. How many participants checked “very good”?

. What percentage out of all participants checked “very good”?

. Did more than a quarter of the participants check “bad” or “very bad”?

. What percentage of the participants that returned the form checked “very good”?

Sadly, the graphic does not allow us to answer a single one of these questions. The table answers all of
them directly, except for the last one. In essence, the information density of the graphic is very close to zero.

The

table has a much higher information density; despite the fact that it uses quite a lot of white space to

present a few numbers. Here is the list of things that went wrong with the 3D-bar diagram:

e The whole graphic is dominated by irritating background lines.

e It is not clear what the numbers at the left mean; presumably percentages, but it might also be the

absolute number of participants.

e The labels at the bottom are rotated, making them hard to read.

(In the real presentation that I saw, the text was rendered at a very low resolution with about 10 by
6 pixels per letter with wrong kerning, making the rotated text almost impossible to read.)

e The third dimension adds complexity to the graphic without adding information.

98

e The three dimensional setup makes it much harder to gauge the height of the bars correctly. Consider
the “bad” bar. Is the number this bar stands for more than 20 or less? While the front of the bar is
below the 20 line, the back of the bar (which counts) is above.

e It is impossible to tell which numbers are represented by the bars. Thus, the bars needlessly hide the
information these bars are all about.

o What do the bar heights add up to? Is it 100% or 60%?
e Does the bar for “very bad” represent 0 or 17
e« Why are the bars blue?

You might argue that in the example the exact numbers are not important for the graphic. The important
things is the “message”, which is that there are more “very good” and “good” ratings than “bad” and “very
bad”. However, to convey this message either use a sentence that says so or use a graphic that conveys this
message more clearly:

none: 20 (40%)

“very good”: 3 (6%)
Ratings given by “very bad”: 0 (0%)

50 participants

“good”: 9 (18%) “bad”: 8 (16%)

“ok”: 10 (20%)

The above graphic has about the same information density as the table (about the same size and the
same numbers are shown). In addition, one can directly “see” that there are more good or very good ratings
than bad ones. One can also “see” that the number of people who gave no rating at all is not negligible,
which is quite common for feedback forms.

Charts are not always a good idea. Let us look at an example that I redrew from a pie chart in Die Zeit,
June 4th, 2005:

Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

Sonstige (16,5 kWh) 2,9% Regenerative (53,7 kWh)/davon Wind 4,4% (25,0 kWh)

Mineralélprodukte (9,2 kwh) 1,6%
Erdgas (59,2 kWh) /10 4%

Kernenergie
(158,4 KWh)

Steinkohle (127,1 kWh) Braunkohle (146,0 kWh)

This graphic has been redrawn in TikZ, but the original looks almost exactly the same.
At first sight, the graphic looks “nice and informative”, but there are a lot of things that went wrong:

e The chart is three dimensional. However, the shadings add nothing “information-wise”, at best, they
distract.

99

e In a 3D-pie-chart the relative sizes are very strongly distorted. For example, the area taken up by the
gray color of “Braunkohle” is larger than the area taken up by the green color of “Kernenergie” despite
the fact that the percentage of Braunkohle is less than the percentage of Kernenergie.

e The 3D-distortion gets worse for small areas. The area of “Regenerative” somewhat larger than the
area of “Erdgas”. The area of “Wind” is slightly smaller than the area of “Mineralélprodukte” although
the percentage of Wind is nearly three times larger than the percentage of Mineralélprodukte.

In the last case, the different sizes are only partly due to distortion. The designer(s) of the original
graphic have also made the “Wind” slice too small, even taking distortion into account. (Just compare
the size of “Wind” to “Regenerative” in general.)

e According to its caption, this chart is supposed to inform us that coal was the most important energy
source in Germany in 2004. Ignoring the strong distortions caused by the superfluous and misleading
3D-setup, it takes quite a while for this message to get across.

Coal as an energy source is split up into two slices: one for “Steinkohle” and one for “Braunkohle” (two
different kinds of coal). When you add them up, you see that the whole lower half of the pie chart is
taken up by coal.

The two areas for the different kinds of coal are not visually linked at all. Rather, two different colors
are used, the labels are on different sides of the graphic. By comparison, “Regenerative” and “Wind”
are very closely linked.

e The color coding of the graphic follows no logical pattern at all. Why is nuclear energy green? Re-
generative energy is light blue, “other sources” are blue. It seems more like a joke that the area for
“Braunkohle” (which literally translates to “brown coal”) is stone gray, while the area for “Steinkohle”
(which literally translates to “stone coal”) is brown.

e The area with the lightest color is used for “Erdgas”. This area stands out most because of the brighter
color. However, for this chart “Erdgas” is not really important at all.

Edward Tufte calls graphics like the above “chart junk”. (I am happy to announce, however, that Die Zeit
has stopped using 3D pie charts and their information graphics have got somewhat better.)
Here are a few recommendations that may help you avoid producing chart junk:

e Do not use 3D pie charts. They are ewvil.
e Consider using a table instead of a pie chart.
e Do not apply colors randomly; use them to direct the readers’s focus and to group things.

e Do not use background patterns, like a crosshatch or diagonal lines, instead of colors. They distract.
Background patterns in information graphics are ewvil.

7.7 Attention and Distraction

Pick up your favorite fiction novel and have a look at a typical page. You will notice that the page is very
uniform. Nothing is there to distract the reader while reading; no large headlines, no bold text, no large
white areas. Indeed, even when the author does wish to emphasize something, this is done using italic
letters. Such letters blend nicely with the main text — at a distance you will not be able to tell whether
a page contains italic letters, but you would notice a single bold word immediately. The reason novels are
typeset this way is the following paradigm: Avoid distractions.

Good typography (like good organization) is something you do not notice. The job of typography is to
make reading the text, that is, “absorbing” its information content, as effortless as possible. For a novel,
readers absorb the content by reading the text line-by-line, as if they were listening to someone telling the
story. In this situation anything on the page that distracts the eye from going quickly and evenly from line
to line will make the text harder to read.

Now, pick up your favorite weekly magazine or newspaper and have a look at a typical page. You will
notice that there is quite a lot “going on” on the page. Fonts are used at different sizes and in different
arrangements, the text is organized in narrow columns, typically interleaved with pictures. The reason
magazines are typeset in this way is another paradigm: Steer attention.

Readers will not read a magazine like a novel. Instead of reading a magazine line-by-line, we use headlines
and short abstracts to check whether we want to read a certain article or not. The job of typography is to

100

steer our attention to these abstracts and headlines, first. Once we have decided that we want to read an
article, however, we no longer tolerate distractions, which is why the main text of articles is typeset exactly
the same way as a novel.

The two principles “avoid distractions” and “steer attention” also apply to graphics. When you design a
graphic, you should eliminate everything that will “distract the eye”. At the same time, you should try to
actively help the reader “through the graphic” by using fonts/colors/line widths to highlight different parts.

Here is a non-exhaustive list of things that can distract readers:

o Strong contrasts will always be registered first by the eye. For example, consider the following two
grids:

Even though the left grid comes first in English reading order, the right one is much more likely to
be seen first: The white-to-black contrast is higher than the gray-to-white contrast. In addition, there
are more “places” adding to the overall contrast in the right grid.

Things like grids and, more generally, help lines usually should not grab the attention of the readers
and, hence, should be typeset with a low contrast to the background. Also, a loosely-spaced grid is
less distracting than a very closely-spaced grid.

e Dashed lines create many points at which there is black-to-white contrast. Dashed or dotted lines can
be very distracting and, hence, should be avoided in general.

Do not use different dashing patterns to differentiate curves in plots. You lose data points this way
and the eye is not particularly good at “grouping things according to a dashing pattern”. The eye is
much better at grouping things according to colors.

o Background patterns filling an area using diagonal lines or horizontal and vertical lines or just dots are
almost always distracting and, usually, serve no real purpose.

e Background images and shadings distract and only seldomly add anything of importance to a graphic.

o Cute little clip arts can easily draw attention away from the data.

101

Part 11

Installation and Configuration

by Till Tantau

This part explains how the system is installed. Typically, someone has already done so for your system, so
this part can be skipped; but if this is not the case and you are the poor fellow who has to do the installation,

read the present part.

1,1,L

0,1,L

0,1,L

start —

0,1,R

LLR

The current candidate for the busy beaver for five
states. It is presumed that this Turing machine
writes a maximum number of 1’s before halting
among all Turing machines with five states and the
tape alphabet {0,1}. Proving this conjecture is an
open research problem.

\usetikzlibrary {arrows.meta, automata,positioning, shadows}
\begin{tikzpicture} [->,>={Stealth[round]},shorten >=1pt,auto,node distance=2.8cm,on grid,semithick,
every state/.style={fill=red,draw=none,circular drop shadow,text=white}]

\node[initial,state] (A)
\node [state] (B) [above right=of 4]
\node [state] (D) [below right=of 4]
\node [state] (C) [below right=of B]
\node [state] (E) [below=of D]
\path (A) edge node {0,1,L} (B)
edge node {1,1,R} (C)
(B) edge [loop abovel node {1,1,L} (B)
edge node {0,1,L} (C)
(C) edge node {0,1,L} (D)
edge [bend left] mnode {1,0,R} (E)
(D) edge [loop below]l node {1,1,R} (D)
edge node {0,1,R} (A)
(E) edge [bend left] mnode {1,0,R} (A)

\node [right=Icm,text width=8cm] at (C)

{

{q_a};
{q_b};
{$q_ds};
{q_c7};
{q_e7};

The current candidate for the busy beaver for five states. It is
presumed that this Turing machine writes a maximum number of

1's before halting among all Turing machines with five states
and the tape alphabet $\{0, 1\}$. Proving this conjecture is an

open research problem.
};
\end{tikzpicture}

102

8 Installation

There are different ways of installing PGF, depending on your system and needs, and you may need to install
other packages as well, see below. Before installing, you may wish to review the licenses under which the
package is distributed, see Section 9.

Typically, the package will already be installed on your system. Naturally, in this case you do not need
to worry about the installation process at all and you can skip the rest of this section.

8.1 Package and Driver Versions

This documentation is part of version 3.1.10 of the PGF package. In order to run PGF, you need a reasonably
recent TEX installation. When using IXTEX, you need the following packages installed (newer versions should
also work):

e xcolor version 2.00.

With plain TEX, xcolor is not needed, but you obviously do not get its (full) functionality.
Currently, PGF supports the following backend drivers:

e luatex version 0.76 or higher. Most earlier versions also work.
o pdftex version 0.14 or higher. Earlier versions do not work.

o dvips version 5.94a or higher. Earlier versions may also work.

For inter-picture connections, you need to process pictures using pdftex version 1.40 or higher running
in DVI mode.

e dvipdfm version 0.13.2c or higher. Earlier versions may also work.

For inter-picture connections, you need to process pictures using pdftex version 1.40 or higher running
in DVI mode.

e dvipdfmx version 0.13.2c or higher. Earlier versions may also work.

e dvisvgnm version 1.2.2 or higher. Earlier versions may also work.

e tex4ht version 2003-05-05 or higher. Earlier versions may also work.

e vtex version 8.46a or higher. Earlier versions may also work.

e textures version 2.1 or higher. Earlier versions may also work.

o xetex version 0.996 or higher. Earlier versions may also work.

Currently, PGF supports the following formats:

e latex with complete functionality.

e plain with complete functionality, except for graphics inclusion, which works only for pdfTEX.

e context with complete functionality, except for graphics inclusion, which works only for pdfTEX.

For more details, see Section 10.

8.2 Installing Prebundled Packages

I do not create or manage prebundled packages of PGF, but, fortunately, nice other people do. I cannot give
detailed instructions on how to install these packages, since I do not manage them, but I can tell you were
to find them. If you have a problem with installing, you might wish to have a look at the Debian page or
the MiKTEX page first.

8.2.1 Debian

The command “apt-get install texlive-pictures” should do the trick. Sit back and relax.

103

8.2.2 MiKTeX
For MiKTEX, use the update wizard to install the (latest versions of the) packages called pgf and xcolor.

8.3 Installation in a texmf Tree

For a permanent installation, you place the files of the PGF package in an appropriate texmf tree.

When you ask TEX to use a certain class or package, it usually looks for the necessary files in so-called
texmf trees. These trees are simply huge directories that contain these files. By default, TEX looks for files
in three different texmf trees:

e The root texmf tree, which is usually located at /usr/share/texmf/ or c:\texmf\ or somewhere
similar.

e The local texmf tree, which is usually located at /usr/local/share/texmf/ or c:\localtexmf\ or
somewhere similar.

e Your personal texmf tree, which is usually located in your home directory at ~/texmf/ or
~/Library/texmf/.

You should install the packages either in the local tree or in your personal tree, depending on whether
you have write access to the local tree. Installation in the root tree can cause problems, since an update of
the whole TEX installation will replace this whole tree.

8.3.1 Installation that Keeps Everything Together

Once you have located the right texmf tree, you must decide whether you want to install PGF in such a way
that “all its files are kept in one place” or whether you want to be “TDS-compliant”, where TDS means “TEX
directory structure”.

If you want to keep “everything in one place”, inside the texmf tree that you have chosen create a
sub-sub-directory called texmf/tex/generic/pgf or texmf/tex/generic/pgf-3.1.10, if you prefer. Then
place all files of the pgf package in this directory. Finally, rebuild TEX’s filename database. This is done by
running the command texhash or mktexlsr (they are the same). In MiKTEX, there is a menu option to do
this.

8.3.2 Installation that is TDS-Compliant

While the above installation process is the most “natural” one and although I would like to recommend it
since it makes updating and managing the PGF package easy, it is not TDS-compliant. If you want to be
TDs-compliant, proceed as follows: (If you do not know what TDs-compliant means, you probably do not
want to be TDs-compliant.)

The .tar file of the pgf package contains the following files and directories at its root: README, doc,
generic, plain, and latex. You should “merge” each of the four directories with the following directories
texmf/doc, texmf/tex/generic, texmf/tex/plain, and texmf/tex/latex. For example, in the .tar file
the doc directory contains just the directory pgf, and this directory has to be moved to texmf/doc/pgf.
The root README file can be ignored since it is reproduced in doc/pgf/README.

You may also consider keeping everything in one place and using symbolic links to point from the TDS-
compliant directories to the central installation.

For a more detailed explanation of the standard installation process of packages, you might wish to
consult http://www.ctan.org/installationadvice/. However, note that the PGF package does not come
with a .ins file (simply skip that part).

8.4 Updating the Installation

To update your installation from a previous version, all you need to do is to replace everything in the directory
texmf/tex/generic/pgf with the files of the new version (or in all the directories where pgf was installed,
if you chose a TDS-compliant installation). The easiest way to do this is to first delete the old version and
then proceed as described above. Sometimes, there are changes in the syntax of certain commands from
version to version. If things no longer work that used to work, you may wish to have a look at the release
notes and at the change log.

104

http://www.ctan.org/installationadvice/

9 Licenses and Copyright

9.1 Which License Applies?
Different parts of the PGF package are distributed under different licenses:

1. The code of the package is dual-license. This means that you can decide which license you wish to use
when using the PGF package. The two options are:

(a) You can use the GNU Public License, version 2.

(b) You can use the IATEX Project Public License, version 1.3c.
2. The documentation of the package is also dual-license. Again, you can choose between two options:

(a) You can use the GNU Free Documentation License, version 1.2.
(b) You can use the INTEX Project Public License, version 1.3c.

The “documentation of the package” refers to all files in the subdirectory doc of the pgf package. A
detailed listing can be found in the file doc/generic/pgf/licenses/manifest-documentation.txt. All
files in other directories are part of the “code of the package”. A detailed listing can be found in the file
doc/generic/pgf/licenses/manifest-code.txt.

In the rest of this section, the licenses are presented. The following text is copyrighted, see the plain text
versions of these licenses in the directory doc/generic/pgf/licenses for details.

The example picture used in this manual, the Brave GNU World logo, is taken from the Brave GNU World
homepage, where it is copyrighted as follows: “Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004 Georg
C. F. Greve. Permission is granted to make and distribute verbatim copies of this transcript as long as the
copyright and this permission notice appear.”

9.2 The GNU Public License, Version 2
9.2.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

105

9.2.2 Terms and Conditions For Copying, Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(¢) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

106

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsubsection b
above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

107

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

9.2.3 No Warranty

10. Because the program is licensed free of charge, there is no warranty for the program, to the extent
permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or correction.

11. In no event unless required by applicable law or agreed to in writing will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out of the
use or inability to use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility of such damages.

9.3 The IXTEX Project Public License, Version 1.3c 2006-05-20
9.3.1 Preamble

The KTEX Project Public License (LPPL) is the primary license under which the IXTEX kernel and the base
IXTEX packages are distributed.

You may use this license for any work of which you hold the copyright and which you wish to distribute.
This license may be particularly suitable if your work is TeX-related (such as a IWTEX package), but it is
written in such a way that you can use it even if your work is unrelated to TEX.

The section ‘WHETHER AND HOW TO DISTRIBUTE WORKS UNDER THIS LICENSE’, below, gives instruc-
tions, examples, and recommendations for authors who are considering distributing their works under this
license.

This license gives conditions under which a work may be distributed and modified, as well as conditions
under which modified versions of that work may be distributed.

We, the IXTEX3 Project, believe that the conditions below give you the freedom to make and distribute
modified versions of your work that conform with whatever technical specifications you wish while maintain-
ing the availability, integrity, and reliability of that work. If you do not see how to achieve your goal while
meeting these conditions, then read the document ‘cfgguide.tex’ and ‘modguide.tex’ in the base KTEX
distribution for suggestions.

9.3.2 Definitions

In this license document the following terms are used:

108

Work Any work being distributed under this License.
Derived Work Any work that under any applicable law is derived from the Work.

Modification Any procedure that produces a Derived Work under any applicable law — for example, the
production of a file containing an original file associated with the Work or a significant portion of such
a file, either verbatim or with modifications and/or translated into another language.

Modify To apply any procedure that produces a Derived Work under any applicable law.

Distribution Making copies of the Work available from one person to another, in whole or in part. Distri-
bution includes (but is not limited to) making any electronic components of the Work accessible by file
transfer protocols such as FTP or HTTP or by shared file systems such as Sun’s Network File System
(NFS).

Compiled Work A version of the Work that has been processed into a form where it is directly usable on
a computer system. This processing may include using installation facilities provided by the Work,
transformations of the Work, copying of components of the Work, or other activities. Note that
modification of any installation facilities provided by the Work constitutes modification of the Work.

Current Maintainer A person or persons nominated as such within the Work. If there is no such explicit
nomination then it is the ‘Copyright Holder’ under any applicable law.

Base Interpreter A program or process that is normally needed for running or interpreting a part or the
whole of the Work.

A Base Interpreter may depend on external components but these are not considered part of the
Base Interpreter provided that each external component clearly identifies itself whenever it is used
interactively. Unless explicitly specified when applying the license to the Work, the only applicable
Base Interpreter is a ‘IATEX-Format’ or in the case of files belonging to the ‘WTEX-format’ a program
implementing the ‘TEX language’.

9.3.3 Conditions on Distribution and Modification

1. Activities other than distribution and/or modification of the Work are not covered by this license; they
are outside its scope. In particular, the act of running the Work is not restricted and no requirements
are made concerning any offers of support for the Work.

2. You may distribute a complete, unmodified copy of the Work as you received it. Distribution of only
part of the Work is considered modification of the Work, and no right to distribute such a Derived
Work may be assumed under the terms of this clause.

3. You may distribute a Compiled Work that has been generated from a complete, unmodified copy of
the Work as distributed under Clause 2 above, as long as that Compiled Work is distributed in such a
way that the recipients may install the Compiled Work on their system exactly as it would have been
installed if they generated a Compiled Work directly from the Work.

4. If you are the Current Maintainer of the Work, you may, without restriction, modify the Work, thus
creating a Derived Work. You may also distribute the Derived Work without restriction, including
Compiled Works generated from the Derived Work. Derived Works distributed in this manner by the
Current Maintainer are considered to be updated versions of the Work.

5. If you are not the Current Maintainer of the Work, you may modify your copy of the Work, thus
creating a Derived Work based on the Work, and compile this Derived Work, thus creating a Compiled
Work based on the Derived Work.

6. If you are not the Current Maintainer of the Work, you may distribute a Derived Work provided the
following conditions are met for every component of the Work unless that component clearly states in
the copyright notice that it is exempt from that condition. Only the Current Maintainer is allowed to
add such statements of exemption to a component of the Work.

109

(a) If a component of this Derived Work can be a direct replacement for a component of the Work when
that component is used with the Base Interpreter, then, wherever this component of the Work
identifies itself to the user when used interactively with that Base Interpreter, the replacement
component of this Derived Work clearly and unambiguously identifies itself as a modified version
of this component to the user when used interactively with that Base Interpreter.

(b) Every component of the Derived Work contains prominent notices detailing the nature of the
changes to that component, or a prominent reference to another file that is distributed as part of
the Derived Work and that contains a complete and accurate log of the changes.

(¢) No information in the Derived Work implies that any persons, including (but not limited to) the
authors of the original version of the Work, provide any support, including (but not limited to)
the reporting and handling of errors, to recipients of the Derived Work unless those persons have
stated explicitly that they do provide such support for the Derived Work.

(d) You distribute at least one of the following with the Derived Work:

i. A complete, unmodified copy of the Work; if your distribution of a modified component
is made by offering access to copy the modified component from a designated place, then
offering equivalent access to copy the Work from the same or some similar place meets this
condition, even though third parties are not compelled to copy the Work along with the
modified component;

ii. Information that is sufficient to obtain a complete, unmodified copy of the Work.

7. If you are not the Current Maintainer of the Work, you may distribute a Compiled Work generated
from a Derived Work, as long as the Derived Work is distributed to all recipients of the Compiled
Work, and as long as the conditions of Clause 6, above, are met with regard to the Derived Work.

8. The conditions above are not intended to prohibit, and hence do not apply to, the modification, by
any method, of any component so that it becomes identical to an updated version of that component
of the Work as it is distributed by the Current Maintainer under Clause 4, above.

9. Distribution of the Work or any Derived Work in an alternative format, where the Work or that Derived
Work (in whole or in part) is then produced by applying some process to that format, does not relax
or nullify any sections of this license as they pertain to the results of applying that process.

10. (a) A Derived Work may be distributed under a different license provided that license itself honors
the conditions listed in Clause 6 above, in regard to the Work, though it does not have to honor
the rest of the conditions in this license.

(b) If a Derived Work is distributed under a different license, that Derived Work must provide suf-
ficient documentation as part of itself to allow each recipient of that Derived Work to honor the
restrictions in Clause 6 above, concerning changes from the Work.

11. This license places no restrictions on works that are unrelated to the Work, nor does this license place
any restrictions on aggregating such works with the Work by any means.

12. Nothing in this license is intended to, or may be used to, prevent complete compliance by all parties
with all applicable laws.

9.3.4 No Warranty

There is no warranty for the Work. Except when otherwise stated in writing, the Copyright Holder provides
the Work ‘as is’, without warranty of any kind, either expressed or implied, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the
quality and performance of the Work is with you. Should the Work prove defective, you assume the cost of
all necessary servicing, repair, or correction.

In no event unless required by applicable law or agreed to in writing will The Copyright Holder, or
any author named in the components of the Work, or any other party who may distribute and/or modify
the Work as permitted above, be liable to you for damages, including any general, special, incidental or
consequential damages arising out of any use of the Work or out of inability to use the Work (including, but
not limited to, loss of data, data being rendered inaccurate, or losses sustained by anyone as a result of any
failure of the Work to operate with any other programs), even if the Copyright Holder or said author or said
other party has been advised of the possibility of such damages.

110

9.3.5 Maintenance of The Work

The Work has the status ‘author-maintained’ if the Copyright Holder explicitly and prominently states near
the primary copyright notice in the Work that the Work can only be maintained by the Copyright Holder
or simply that it is ‘author-maintained’.

The Work has the status ‘maintained’ if there is a Current Maintainer who has indicated in the Work
that they are willing to receive error reports for the Work (for example, by supplying a valid e-mail address).
It is not required for the Current Maintainer to acknowledge or act upon these error reports.

The Work changes from status ‘maintained’ to ‘unmaintained’ if there is no Current Maintainer, or the
person stated to be Current Maintainer of the work cannot be reached through the indicated means of
communication for a period of six months, and there are no other significant signs of active maintenance.

You can become the Current Maintainer of the Work by agreement with any existing Current Maintainer
to take over this role.

If the Work is unmaintained, you can become the Current Maintainer of the Work through the following
steps:

1. Make a reasonable attempt to trace the Current Maintainer (and the Copyright Holder, if the two
differ) through the means of an Internet or similar search.

2. If this search is successful, then enquire whether the Work is still maintained.

(a) If it is being maintained, then ask the Current Maintainer to update their communication data
within one month.

(b) If the search is unsuccessful or no action to resume active maintenance is taken by the Cur-
rent Maintainer, then announce within the pertinent community your intention to take over
maintenance. (If the Work is a ITEX work, this could be done, for example, by posting to
comp.text.tex.)

3. (a) If the Current Maintainer is reachable and agrees to pass maintenance of the Work to you, then
this takes effect immediately upon announcement.

(b) If the Current Maintainer is not reachable and the Copyright Holder agrees that maintenance of
the Work be passed to you, then this takes effect immediately upon announcement.

4. If you make an ‘intention announcement’ as described in 2b above and after three months your intention
is challenged neither by the Current Maintainer nor by the Copyright Holder nor by other people, then
you may arrange for the Work to be changed so as to name you as the (new) Current Maintainer.

5. If the previously unreachable Current Maintainer becomes reachable once more within three months of
a change completed under the terms of 3b or 4, then that Current Maintainer must become or remain
the Current Maintainer upon request provided they then update their communication data within one
month.

A change in the Current Maintainer does not, of itself, alter the fact that the Work is distributed under the
LPPL license.

If you become the Current Maintainer of the Work, you should immediately provide, within the Work,
a prominent and unambiguous statement of your status as Current Maintainer. You should also announce
your new status to the same pertinent community as in 2b above.

9.3.6 Whether and How to Distribute Works under This License

This section contains important instructions, examples, and recommendations for authors who are consid-
ering distributing their works under this license. These authors are addressed as ‘you’ in this section.

9.3.7 Choosing This License or Another License

If for any part of your work you want or need to use distribution conditions that differ significantly from
those in this license, then do not refer to this license anywhere in your work but, instead, distribute your
work under a different license. You may use the text of this license as a model for your own license, but your
license should not refer to the LPPL or otherwise give the impression that your work is distributed under the
LPPL.

The document ‘modguide.tex’ in the base ITEX distribution explains the motivation behind the con-
ditions of this license. It explains, for example, why distributing I¥TEX under the GNU General Public

111

License (GPL) was considered inappropriate. Even if your work is unrelated to IATEX, the discussion in
‘modguide.tex’ may still be relevant, and authors intending to distribute their works under any license are
encouraged to read it.

9.3.8 A Recommendation on Modification Without Distribution

It is wise never to modify a component of the Work, even for your own personal use, without also meeting the
above conditions for distributing the modified component. While you might intend that such modifications
will never be distributed, often this will happen by accident — you may forget that you have modified that
component; or it may not occur to you when allowing others to access the modified version that you are
thus distributing it and violating the conditions of this license in ways that could have legal implications
and, worse, cause problems for the community. It is therefore usually in your best interest to keep your copy
of the Work identical with the public one. Many works provide ways to control the behavior of that work
without altering any of its licensed components.

9.3.9 How to Use This License

To use this license, place in each of the components of your work both an explicit copyright notice including

your name and the year the work was authored and/or last substantially modified. Include also a statement

that the distribution and/or modification of that component is constrained by the conditions in this license.
Here is an example of such a notice and statement:

%% pig.dtx

%% Copyright 2005 M. Y. Name

%

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3 or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

% This work has the LPPL maintenance status “maintained'.
% The Current Maintainer of this work is M. Y. Name.

% This work consists of the files pig.dtx and pig.ins
% and the derived file pig.sty.

Given such a notice and statement in a file, the conditions given in this license document would apply,
with the “Work’ referring to the three files ‘pig.dtx’, ‘pig.ins’, and ‘pig.sty’ (the last being generated
from ‘pig.dtx’ using ‘pig.ins’), the ‘Base Interpreter’ referring to any ‘WITEX-Format’, and both ‘Copyright
Holder’ and ‘Current Maintainer’ referring to the person ‘M. Y. Name’.

If you do not want the Maintenance section of LPPL to apply to your Work, change ‘maintained’ above
into ‘author-maintained’. However, we recommend that you use ‘maintained’ as the Maintenance section
was added in order to ensure that your Work remains useful to the community even when you can no longer
maintain and support it yourself.

9.3.10 Derived Works That Are Not Replacements

Several clauses of the LPPL specify means to provide reliability and stability for the user community. They
therefore concern themselves with the case that a Derived Work is intended to be used as a (compatible or
incompatible) replacement of the original Work. If this is not the case (e.g., if a few lines of code are reused
for a completely different task), then clauses 6b and 6d shall not apply.

9.3.11 Important Recommendations

Defining What Constitutes the Work The LPPL requires that distributions of the Work contain all
the files of the Work. It is therefore important that you provide a way for the licensee to determine which

112

files constitute the Work. This could, for example, be achieved by explicitly listing all the files of the Work
near the copyright notice of each file or by using a line such as:

% This work consists of all files listed in manifest.txt.

in that place. In the absence of an unequivocal list it might be impossible for the licensee to determine
what is considered by you to comprise the Work and, in such a case, the licensee would be entitled to make
reasonable conjectures as to which files comprise the Work.

9.4 GNU Free Documentation License, Version 1.2, November 2002
9.4.1 Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

9.4.2 Applicability and definitions

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

113

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorse-
ments”, or “History”.) To “Preserve the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have
is void and has no effect on the meaning of this License.

9.4.3 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this Li-
cense. You may not use technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

9.4.4 Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

9.4.5 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified

114

Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A.

m = 0 a

N.

0.

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

. List on the Title Page, as authors, one or more persons or entities responsible for authorship of

the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

Include an unaltered copy of this License.

. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the

title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

. Preserve the network location, if any, given in the Document for public access to a Transparent copy

of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and

preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section

numbers or the equivalent are not considered part of the section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”; provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any

115

one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

9.4.6 Combining Documents

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

9.4.7 Collection of Documents

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

9.4.8 Aggregating with independent Works

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

9.4.9 Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9.4.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will

116

automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

9.4.11 Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

9.4.12 Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ... Texts”. line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

117

10 Supported Formats

TEX was designed to be a flexible system. This is true both for the input for TEX as well as for the output.
The present section explains which input formats there are and how they are supported by PGF. It also
explains which different output formats can be produced.

10.1 Supported Input Formats: IXTEX, Plain TgX, ConTEXt

TEX does not prescribe exactly how your input should be formatted. While it is customary that, say,
an opening brace starts a scope in TEX, this is by no means necessary. Likewise, it is customary that
environments start with \begin, but TEX could not really care less about the exact command name.

Even though TEX can be reconfigured, users can not. For this reason, certain input formats specify a set
of commands and conventions how input for TEX should be formatted. There are currently three “major”
formats: Donald Knuth’s original plain TEX format, Leslie Lamport’s popular IXTEX format, and Hans
Hangen’s ConTEXt format.

10.1.1 Using the IATEX Format

Using PGF and TikZ with the IXTEX format is easy: You say \usepackage{pgf} or \usepackage{tikz}.
Usually, that is all you need to do, all configuration will be done automatically and (hopefully) correctly.

The style files used for the IATEX format reside in the subdirectory latex/pgf/ of the PGF-system.
Mainly, what these files do is to include files in the directory generic/pgf. For example, here is the content
of the file latex/pgf/frontends/tikz.sty:

% Copyright 2019 by Till Tantau
% This file may be distributed and/or modified

% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.

% See the file doc/generic/pgf/licenses/LICENSE for more details.

\RequirePackage{pgf ,pgffor}
\input{tikz.code.tex}
\endinput

The files in the generic/pgf directory do the actual work.

10.1.2 Using the Plain TEX Format

When using the plain TEX format, you say \input{pgf.tex} or \input{tikz.tex}. Then, instead of
\begin{pgfpicture} and \end{pgfpicture} you use \pgfpicture and \endpgfpicture.

Unlike for the BTEX format, PGF is not as good at discerning the appropriate configuration for the plain
TEX format. In particular, it can only automatically determine the correct output format if you use pdftex
or tex plus dvips. For all other output formats you need to set the macro \pgfsysdriver to the correct
value. See the description of using output formats later on.

Like the IATEX style files, the plain TEX files like tikz.tex also just include the correct tikz.code.tex
file.

10.1.3 Using the ConTEgXt Format

When using the ConTgEXt format, you say \usemodule[pgf] or \usemodule[tikz]. As for the plain
TEX format you also have to replace the start- and end-of-environment tags as follows: Instead of
\begin{pgfpicture} and \end{pgfpicture} you use \startpgfpicture and \stoppgfpicture; similarly,
instead of \begin{tikzpicture} and \end{tikzpicture} you use must now use \starttikzpicture and
\stoptikzpicture; and so on for other environments.

The ConTEXt support is very similar to the plain TEX support, so the same restrictions apply: You may
have to set the output format directly and graphics inclusion may be a problem.

In addition to pgf and tikz there also exist modules like pgfcore or pgfmodulematrix. To use them,
you may need to include the module pgfmod first (the modules pgf and tikz both include pgfmod for you,

118

so typically you can skip this). This special module is necessary since old versions of ConTEXt MKII before
2005 satanically restricted the length of module names to 8 characters and PGF’s long names are mapped to
cryptic 6-letter-names for you by the module pgfmod. This restriction was never in place in ConTEXt MKIV
and the pgfmod module can be safely ignored nowadays.

10.2 Supported Output Formats

An output format is a format in which TEX outputs the text it has typeset. Producing the output is
(conceptually) a two-stage process:

1. TeX typesets your text and graphics. The result of this typesetting is mainly a long list of letter—
coordinate pairs, plus (possibly) some “special” commands. This long list of pairs is written to some-
thing called a .dvi-file (informally known as “device-independent file”).

2. Some other program reads this .dvi-file and translates the letter—coordinate pairs into, say, PostScript
commands for placing the given letter at the given coordinate.

The classical example of this process is the combination of latex and dvips. The latex program (which
is just the tex program called with the I4TEX-macros preinstalled) produces a .dvi-file as its output. The
dvips program takes this output and produces a .ps-file (a PostScript file). Possibly, this file is further
converted using, say, ps2pdf, whose name is supposed to mean “PostScript to PDF”. Another example of
programs using this process is the combination of tex and dvipdfm. The dvipdfm program takes a .dvi-
file as input and translates the letter—coordinate pairs therein into PDF-commands, resulting in a .pdf file
directly. Finally, the tex4ht is also a program that takes a .dvi-file and produces an output, this time it
is a .html file. The programs pdftex and pdflatex are special: They directly produce a .pdf-file without
the intermediate .dvi-stage. However, from the programmer’s point of view they behave exactly as if there
was an intermediate stage.

Normally, TEX only produces letter—coordinate pairs as its “output” This obviously makes it difficult
to draw, say, a curve. For this, “special” commands can be used. Unfortunately, these special commands
are not the same for the different programs that process the .dvi-file. Indeed, every program that takes a
.dvi-file as input has a totally different syntax for the special commands.

One of the main jobs of PGF is to “abstract away” the difference in the syntax of the different programs.
However, this means that support for each program has to be “programmed”, which is a time-consuming
and complicated process.

10.2.1 Selecting the Backend Driver

When TEX typesets your document, it does not know which program you are going to use to transform the
.dvi-file. If your .dvi-file does not contain any special commands, this would be fine; but these days almost
all .dvi-files contain lots of special commands. It is thus necessary to tell TEX which program you are going
to use later on.

Unfortunately, there is no “standard” way of telling this to TEX. For the IATEX format a sophisticated
mechanism exists inside the graphics package and PGF plugs into this mechanism. For other formats and
when this plugging does not work as expected, it is necessary to tell PGF directly which program you are
going to use. This is done by redefining the macro \pgfsysdriver to an appropriate value before you load
pgf. If you are going to use the dvips program, you set this macro to the value pgfsys-dvips.def; if
you use pdftex or pdflatex, you set it to pgfsys-pdftex.def; and so on. In the following, details of the
support of the different programs are discussed.

10.2.2 Producing PDF Output

PGF supports three programs that produce PDF output (PDF means “portable document format” and was
invented by the Adobe company): dvipdfm, pdftex, and vtex. The pdflatex program is the same as the
pdftex program: it uses a different input format, but the output is exactly the same.

File pgfsys-pdftex.def

This is the driver file for use with pdfTEX, that is, with the pdftex or pdflatex command. It includes
pgfsys-common-pdf.def.

This driver has a lot of functionality. (Almost) everything PGF “can do at all” is implemented in this
driver.

119

File pgfsys-dvipdfm.def
This is a driver file for use with (1a)tex followed by dvipdfm. It includes pgfsys-common-pdf .def.

This driver supports most of PGF’s features, but there are some restrictions:

1. In IXTEX mode it uses graphicx for the graphics inclusion and does not support masking.

2. In plain TEX mode it does not support image inclusion.

File pgfsys-xetex.def

This is a driver file for use with xe(la)tex followed by xdvipdfmx. This driver supports largely the
same operations as the dvipdfm driver.

File pgfsys-vtex.def

This is the driver file for use with the commercial VTEX program. Even though it produces PDF output,
it includes pgfsys-common-postscript.def. Note that the VTEX program can produce both Postscript
and PDF output, depending on the command line parameters. However, whether you produce Postscript
or PDF output does not change anything with respect to the driver.

This driver supports most of PGF’s features, except for the following restrictions:

1. In I¥TEX mode it uses graphicx for the graphics inclusion and does not support masking.
2. In plain TEX mode it does not support image inclusion.

3. Shadings are approximated with discrete colors. This typically leads to aliasing patterns in
PostScript and PDF viewing applications.

4. Opacity, Transparency Groups, Fadings and Blend Modes are not supported.

5. Remembering of pictures (inter-picture connections) is not supported.

It is also possible to produce a .pdf-file by first producing a PostScript file (see below) and then using a
PostScript-to-PDF conversion program like ps2pdf or Acrobat Distiller.

10.2.3 Producing PostScript Output
File pgfsys-dvips.def
This is a driver file for use with (1a)tex followed by dvips. It includes pgfsys-common-postscript.def.
This driver also supports most of PGF’s features, except for the following restrictions:
1. In I¥TEX mode it uses graphicx for the graphics inclusion. Image masking is supported if the
PostScript output is further processed with ps2pdf to produce PDF.
2. In plain TEX mode it does not support image inclusion.

3. Functional shadings are approximated with Type-0 functions (sampled functions), because Type-4
functions are not available in the latest (version 3) PostScript language definition. Due to their
fixed resolution, Type-0 functional shadings are of lesser quality at higher zoom levels as compared
to functional shadings from PDF producing drivers. Axial and radial shadings are fully supported.
The same output quality (smooth shadings) is achieved as with drivers that produce PDF output.

4. Although fully supported, opacity and fadings are PDF features that become visible only after
further processing the PostScript output with ps2pdf. Note that newer Ghostscript versions are
necessary for producing opacity in the PDF output. Also, beginning with version 9.52 of Ghostscript,
command line option ~dALLOWPSTRANSPARENCY must be added:

ps2pdf -dALLOWPSTRANSPARENCY example.ps

5. For remembering of pictures (inter-picture connections) you need to use a recent version of pdftex
running in DVI-mode.

File pgfsys-textures.def
This is a driver file for use with the TEXTURES program. It includes pgfsys-common-postscript.def.

This driver shares the restrictions of the vtex driver, but adds limited opacity support (no transparency
groups, fadings and blend modes, though).

You can also use the vtex program together with pgfsys-vtex.def to produce Postscript output.

120

10.2.4 Producing SVG Output

File

File

pgfsys-dvisvgm.def
This driver converts DVI files to SVG file, including text and fonts. When you select this driver, PGF will
output the required raw sSVG code for the pictures it produces.

Since the graphics package does not (yet?) support this driver directly, there is special rule for this
driver in WTEX: If the option dvisvgnm is given to the tikz package, this driver gets selected (normally,
the driver selected by graphics would be used). For packages like beamer that load PGF themselves,
this means that the option dvisvgm should be given to the document class.

7 example.tex
\documentclass [dvisvgm] {minimal}

\usepackage{tikz}

\begin{document}
Hello \tikz [baseline] \fill [fill=blue!80'black] (0,.75ex) circlel[radius=.75ez];
\end{document}

And then run

latex example
dvisvgm example

or better

lualatex --output-format=dvi example
dvisvgm example

(This is “better” since it gives you access to the full power of LuaTEX inside your TEX-file. In particular,
TikZ is able to run graph drawing algorithms in this case.)

Unlike the tex4ht driver below, this driver has full support of text nodes.

pgfsys-tex4ht.def

This is a driver file for use with the tex4ht program. It is selected automatically when the tex4ht style
or command is loaded. It includes pgfsys-common-svg.def.

The tex4ht program converts .dvi-files to .html-files. While the HTML-format cannot be used to draw
graphics, the svG-format can. This driver will ask PGF to produce an SVG-picture for each PGF graphic
in your text.

When using this driver you should be aware of the following restrictions:

1. In I¥TEX mode it uses graphicx for the graphics inclusion.

2. In plain TEX mode it does not support image inclusion.

3. Remembering of pictures (inter-picture connections) is not supported.
4

. Text inside pgfpictures is not supported very well. The reason is that the svG specification
currently does not support text very well and, although it is possible to “escape back” to HTML,
TikZ has then to guess what size the text rendered by the browser would have.

5. Unlike for other output formats, the bounding box of a picture “really crops” the picture.

6. Matrices do not work.

7. Functional shadings are not supported.
The driver basically works as follows: When a {pgfpicture} is started, appropriate \special com-
mands are used to directed the output of tex4ht to a new file called \jobname-xxx.svg, where xxx
is a number that is increased for each graphic. Then, till the end of the picture, each (system layer)
graphic command creates a special that inserts appropriate svaG literal text into the output file. The

exact details are a bit complicated since the imaging model and the processing model of PostScript/PDF
and SVG are not quite the same; but they are “close enough” for PGF’s purposes.

Because text is not supported very well in the SVG standard, you may wish to use the following options
to modify the way text is handled:

121

/pgf/texdht node/escape=(boolean) (default false)

Selects the rendering method for a text node with the tex4ht driver.

When this key is set to false, text is translated into SVG text, which is somewhat limited: simple
characters (letters, numerals, punctuation, >, [, ..), subscripts and superscripts (but not subsub-
scripts) will display but everything else will be filtered out, ignored or will produce invalid HTML
code (in the worst case). This means that two kind of texts render reasonably well:

1. First, plain text without math mode, special characters or anything else special.
2. Second, wvery simple mathematical text that contains subscripts or superscripts. Even then,
variables are not correctly set in italics and, in general, text simple does not look very nice.

If you use text that contains anything special, even something as simple as α, this may
corrupt the graphic.

\tikz \node[draw,/pgf/tex4ht node/escape=false] {Example : $(a+b) 2=a"2+2ab+b~2$};

When you write node [/pgf/tex4ht node/escape=truel {(text)}, PGF escapes back to HTML to
render the (text). This method produces valid HTML code in most cases and the support for
complicated text nodes is much better since code that renders well outside a {pgfpicture}, should
also render well inside a text node. Another advantage is that inside text nodes with fixed width,
HTML will produce line breaks for long lines. On the other hand, you need a browser with good sva
support to display the picture. Also, the text will display differently, depending on your browsers,
the fonts you have on your system and your settings. Finally, PGF has to guess the size of the text
rendered by the browser to scale it and prevent it from sticking from the node. When it fails, the
text will be either cropped or too small.

\tikz \node[draw,/pgf/tex4ht node/escape=true]
{Example : $\int_O0~\infty\frac{1}{1+t"2}dt=\frac{\pi}{2}$};

/pgf/tex4dht node/css=(filename) (default \ jobname)

This option allows you to tell the browser what css file it should use to style the display of the
node (only with tex4ht node/escape=true).

/pgf/tex4ht node/class=(class name) (default foreignobject)

This option allows you to give a class name to the node, allowing it to be styled by a css file (only
with tex4ht node/escape=true).

/pgf/texdht node/id=(id name) (default \jobname picture number-node number)

This option allows you to give a unique id to the node, allowing it to be styled by a css file (only
with tex4ht node/escape=true).

10.2.5 Producing Perfectly Portable DVI Output

File pgfsys-dvi.def

This is a driver file that can be used with any output driver, except for tex4ht.

The driver will produce perfectly portable .dvi files by composing all pictures entirely of black rectan-
gles, the basic and only graphic shape supported by the TEX core. Even straight, but slanted lines are
tricky to get right in this model (they need to be composed of lots of little squares).

Naturally, very little is possible with this driver. In fact, so little is possible that it is easier to list what
is possible:

Text boxes can be placed in the normal way.

Lines and curves can be drawn (stroked). If they are not horizontal or vertical, they are composed
of hundreds of small rectangles.

Lines of different width are supported.
Transformations are supported.

Note that, say, even filling is not supported! (Let alone color or anything fancy.)

This driver has only one real application: It might be useful when you only need horizontal or vertical
lines in a picture. Then, the results are quite satisfactory.

122

Part 111
TikZ ist kein Zeichenprogramm

by Till Tantau

c W When we assume that AB and C'D
are parallel, i.e., AB|| CD, then o =~
(= /&) 5

and 8 = 4.
E

\usetikzlibrary {angles,calc,quotes}
\begin{tikzpicture} [angle radius=.75cm]

\node (A) at (-2,0) [red,left] {$A%};
\node (B) at (3,.5) [red,right] {B};
\node (C) at (-2,2) [blue,left] {C};
\node (D) at (3,2.5) [blue,right] {D};
\node (E) at (60:-5mm) [below] {E};
\node (F) at (60:3.5cm) [above] {F};

\coordinate (X) at (intersection cs:first line={(A)--(B)}, second line={(E)--(F)});
\coordinate (Y) at (intersection cs:first line={(C)--(D)}, second line={(E)--(F)});

\path
(A) edge [red, thick] (B)
(C) edge [blue, thick] (D)
(E) edge [thick] (F)
pic ["α", draw, fill=yellow] {angle = F--X--A}

pic ["β", draw, fill=green!/30] {angle = B--X--F}
pic ["γ", draw, fill=yellow] {angle = E--Y--D}
pic ["δ", draw, fill=green!/30] {angle = C--Y--E};

\node at ($ (D)!.5!(B) $) [right=Icm,text width=6cm,rounded corners,fill=red/20,inner sep=1ez]
{

When we assume that $\color{red}AB$ and $\color{blue}CD$ are

parallel, i.\,e., ${\color{red}AB} \mathbin{\|} \color{blue}CD$,

then $\alpha = \gamma$ and $\beta = \delta$.

i

\end{tikzpicture}

123

11 Design Principles

This section describes the design principles behind the TikZ frontend, where TikZ means “TikZ ist kein
Zeichenprogramm”. To use TikZ, as a ITEX user say \usepackage{tikzl} somewhere in the preamble, as a
plain TEX user say \input tikz.tex. TikZ’s job is to make your life easier by providing an easy-to-learn
and easy-to-use syntax for describing graphics.

The commands and syntax of TikZ were influenced by several sources. The basic command names and
the notion of path operations is taken from METAFONT, the option mechanism comes from PSTRICKS, the
notion of styles is reminiscent of SVG, the graph syntax is taken from GRAPHVIZ. To make it all work together,
some compromises were necessary. I also added some ideas of my own, like coordinate transformations.

The following basic design principles underlie TikZ:

—_

. Special syntax for specifying points.

2. Special syntax for path specifications.

3. Actions on paths.

4. Key—value syntax for graphic parameters.
5. Special syntax for nodes.

6. Special syntax for trees.

7. Special syntax for graphs.

8. Grouping of graphic parameters.

9. Coordinate transformation system.

11.1 Special Syntax For Specifying Points

TikZ provides a special syntax for specifying points and coordinates. In the simplest case, you provide two
TEX dimensions, separated by commas, in round brackets as in (1cm,2pt).

You can also specify a point in polar coordinates by using a colon instead of a comma as in (30:1cm),
which means “lcm in a 30 degrees direction”.

If you do not provide a unit, as in (2,1), you specify a point in PGF’s zy-coordinate system. By default,
the unit z-vector goes 1lcm to the right and the unit y-vector goes lcm upward.

By specifying three numbers as in (1,1,1) you specify a point in PGF’s xyz-coordinate system.

It is also possible to use an anchor of a previously defined shape as in (first node.south).

You can add two plus signs before a coordinate as in ++(1cm,Opt). This means “lcm to the right of the
last point used”. This allows you to easily specify relative movements. For example, (1,0) ++(1,0) ++(0,1)
specifies the three coordinates (1,0), then (2,0), and (2,1).

Finally, instead of two plus signs, you can also add a single one. This also specifies a point in a relative
manner, but it does not “change” the current point used in subsequent relative commands. For example,
(1,0) +(1,0) +(0,1) specifies the three coordinates (1,0), then (2,0), and (1,1).

11.2 Special Syntax For Path Specifications

When creating a picture using TikZ, your main job is the specification of paths. A path is a series of straight
or curved lines, which need not be connected. TikZ makes it easy to specify paths, partly using the syntax
of METAPOST. For example, to specify a triangular path you use

(6pt,0pt) -- (Opt,Opt) -- (Opt,5pt) -- cycle

and you get N when you draw this path.

124

11.3 Actions on Paths

A path is just a series of straight and curved lines, but it is not yet specified what should happen with it.
One can draw a path, fill a path, shade it, clip it, or do any combination of these. Drawing (also known
as stroking) can be thought of as taking a pen of a certain thickness and moving it along the path, thereby
drawing on the canvas. Filling means that the interior of the path is filled with a uniform color. Obviously,
filling makes sense only for closed paths and a path is automatically closed prior to filling, if necessary.

Given a path asin \path (0,0) rectangle (2ex,lex);,you can draw it by adding the draw option as in
\path[draw] (0,0) rectangle (2ex,lex);, which yields @. The \draw command is just an abbreviation
for \path[draw]. To fill a path, use the £i11 option or the \fill command, which is an abbreviation for
\path[fil1l]. The \filldraw command is an abbreviation for \path[fill,draw]. Shading is caused by
the shade option (there are \shade and \shadedraw abbreviations) and clipping by the clip option. There
is also a \clip command, which does the same as \path[clip], but not commands like \drawclip. Use,
say, \draw[clip] or \path[draw,clip] instead.

All of these commands can only be used inside {tikzpicture} environments.

TikZ allows you to use different colors for filling and stroking.

11.4 Key—Value Syntax for Graphic Parameters

Whenever TikZ draws or fills a path, a large number of graphic parameters influences the rendering. Ex-
amples include the colors used, the dashing pattern, the clipping area, the line width, and many others. In
TikZ, all these options are specified as lists of so called key—value pairs, as in color=red, that are passed
as optional parameters to the path drawing and filling commands. This usage is similar to PSTRICKS. For
example, the following will draw a thick, red triangle;

[\tikz \draw[line width=2pt,color=red] (1,0) -- (0,0) -- (0,1) -- cycle;

11.5 Special Syntax for Specifying Nodes

TikZ introduces a special syntax for adding text or, more generally, nodes to a graphic. When you specify
a path, add nodes as in the following example:

/ \tikz \draw (1,1) node {text} -- (2,2);
text

Nodes are inserted at the current position of the path, but either after (the default) or before the complete
path is rendered. When special options are given, as in \draw (1,1) nodel[circle,draw] {text};, the
text is not just put at the current position. Rather, it is surrounded by a circle and this circle is “drawn”.

You can add a name to a node for later reference either by using the option name=(node name) or by
stating the node name in parentheses outside the text as in node[circle] (name){text}.

Predefined shapes include rectangle, circle, and ellipse, but it is possible (though a bit challenging)
to define new shapes.

11.6 Special Syntax for Specifying Trees

The “node syntax” can also be used to draw trees: A node can be followed by any number of children, each
introduced by the keyword child. The children are nodes themselves, each of which may have children in
turn.

\begin{tikzpicture}
Loes \node {root}
/ \ child {node {left}}
iohy child {node {right}
left right child {node {child}}
/ \ child {node {child}}
. g e
child - child \end{tikzpicture}

125

Since trees are made up from nodes, it is possible to use options to modify the way trees are drawn. Here
are two examples of the above tree, redrawn with different options:

\usetikzlibrary {arrows.meta,trees}

I
00 \begin{tikzpicture}
[edge from parent fork down, sibling distance=15mm, level distance=15mm,
every node/.style={fill=red!30,rounded corners},
- edge from parent/.style={red,-{Circle[open]},thick,draw}]
left right \node {root}
child {node {left}}
child {node {right}
child {node {child}}
child child }‘Chlld {node {child}}
\end{tikzpicture}
\begin{tikzpicture}

[parent anchor=east,child anchor=west,grow=east,

,'@ sibling distance=15mm, level distance=15mm,
’/ every node/.style={ball color=red,circle,text=white},
7 N edge from parent/.style={draw,dashed,thick,red}]
/
’ \\
\
\ @
\

\node {root}
child {node {left}}
child {node {right}
child {node {child}}
child {node {child}}

QO

15
\end{tikzpicture}

11.7 Special Syntax for Graphs

The \node command gives you fine control over where nodes should be placed, what text they should use,
and what they should look like. However, when you draw a graph, you typically need to create numerous
fairly similar nodes that only differ with respect to the name they show. In these cases, the graph syntax
can be used, which is another syntax layer build “on top” of the node syntax.

\usetikzlibrary {graphs}
\tikz \graph [grow down, branch right] {
i\ root -> { left, right -> {child, child} }

left i ght s

l

child

root

The syntax of the graph command extends the so-called DOT-notation used in the popular GRAPHVIZ
program.

Depending on the version of TEX you use (it must allow you to call Lua code, which is the case for
LuaTgX), you can also ask TikZ to do automatically compute good positions for the nodes of a graph using
one of several integrated graph drawing algorithms.

11.8 Grouping of Graphic Parameters

Graphic parameters should often apply to several path drawing or filling commands. For example, we
may wish to draw numerous lines all with the same line width of 1pt. For this, we put these commands
in a {scope} environment that takes the desired graphic options as an optional parameter. Naturally,
the specified graphic parameters apply only to the drawing and filling commands inside the environment.
Furthermore, nested {scope} environments or individual drawing commands can override the graphic pa-
rameters of outer {scope} environments. In the following example, three red lines, two green lines, and one
blue line are drawn:

126

\begin{tikzpicture}
—_— \begin{scope} [color=red]
\draw (Omm,10mm) -- (10mm,10mm) ;

- \draw (Omm, 8mm) -- (10mm, 8mm);

\draw (Omm, 6mm) -- (10mm, 6mm);

\end{scope}

\begin{scope} [color=green]
\draw (Omm, 4mm) -- (10mm, 4mm) ;
\draw (Omm, 2mm) -- (10mm, 2mm);
\draw[color=blue] (Omm, Omm) -- (10mm, Omm) ;

\end{scope}

\end{tikzpicture}

The {tikzpicture} environment itself also behaves like a {scope} environment, that is, you can specify
graphic parameters using an optional argument. These optional apply to all commands in the picture.

11.9 Coordinate Transformation System

TikZ supports both PGF’s coordinate transformation system to perform transformations as well as canvas
transformations, a more low-level transformation system. (For details on the difference between coordinate
transformations and canvas transformations see Section 99.4.)

The syntax is set up in such a way that it is harder to use canvas transformations than coordinate
transformations. There are two reasons for this: First, the canvas transformation must be used with great
care and often results in “bad” graphics with changing line width and text in wrong sizes. Second, PGF loses
track of where nodes and shapes are positioned when canvas transformations are used. So, in almost all
circumstances, you should use coordinate transformations rather than canvas transformations.

127

12 Hierarchical Structures:
Package, Environments, Scopes, and Styles

The present section explains how your files should be structured when you use TikZ. On the top level,
you need to include the tikz package. In the main text, each graphic needs to be put in a {tikzpicture}
environment. Inside these environments, you can use {scopel} environments to create internal groups. Inside
the scopes you use \path commands to actually draw something. On all levels (except for the package level),
graphic options can be given that apply to everything within the environment.

12.1 Loading the Package and the Libraries

\usepackage{tikz} 7% KEREX
\input tikz.tex % plain TX
\usemodule[tikz] % ConTgXt
This package does not have any options.
This will automatically load the PGF and the pgffor package.

PGF needs to know what TEX driver you are intending to use. In most cases PGF is clever enough to
determine the correct driver for you; this is true in particular if you use KTEX. One situation where
PGF cannot know the driver “by itself” is when you use plain TEX or ConTEXt together with dvipdfm.
In this case, you have to write \def\pgfsysdriver{pgfsys-dvipdfm.def} before you input tikz.tex.

\usetikzlibrary{(list of libraries)}

Once TikZ has been loaded, you can use this command to load further libraries. The list of libraries
should contain the names of libraries separated by commas. Instead of curly braces, you can also use
square brackets, which is something ConTEXt users will like. If you try to load a library a second time,
nothing will happen.

Example: \usetikzlibrary{arrows.meta}
The above command will load a whole bunch of extra arrow tip definitions.

What this command does is to load the file tikzlibrary(library).code.tex for each (library) in the
(list of libraries). If this file does not exist, the file pgflibrary(library).code.tex is loaded instead. If
this file also does not exist, an error message is printed. Thus, to write your own library file, all you
need to do is to place a file of the appropriate name somewhere where TEX can find it. IATEX, plain
TEX, and ConTEXt users can then use your library.

12.2 Creating a Picture
12.2.1 Creating a Picture Using an Environment

The “outermost” scope of TikZ is the {tikzpicture} environment. You may give drawing commands only
inside this environment, giving them outside (as is possible in many other packages) will result in chaos.

In TikZ, the way graphics are rendered is strongly influenced by graphic options. For example, there
is an option for setting the color used for drawing, another for setting the color used for filling, and also
more obscure ones like the option for setting the prefix used in the filenames of temporary files written while
plotting functions using an external program. The graphic options are specified in key lists, see Section 12.4
below for details. All graphic options are local to the {tikzpicture} to which they apply.

\begin{tikzpicture}{animations spec)[{options)]
(environment contents)
\end{tikzpicture}

All TikZ commands should be given inside this environment, except for the \tikzset command. You
cannot use graphics commands like the low-level command \pgfpathmoveto outside this environment
and doing so will result in chaos. For TikZ, commands like \path are only defined inside this environ-
ment, so there is little chance that you will do something wrong here.

When this environment is encountered, the (options) are parsed, see Section 12.4. All options given
here will apply to the whole picture. Before the options you can specify animation commands, provided
that the animations library is loaded, see Section 26 for details.

128

Next, the contents of the environment is processed and the graphic commands therein are put into a
box. Non-graphic text is suppressed as well as possible, but non-PGF commands inside a {tikzpicture}
environment should not produce any “output” since this may totally scramble the positioning system
of the backend drivers. The suppressing of normal text, by the way, is done by temporarily switching
the font to \nullfont. You can, however, “escape back” to normal TEX typesetting. This happens, for
example, when you specify a node.

At the end of the environment, PGF tries to make a good guess at the size of a bounding box of the
graphic and then resizes the picture box such that the box has this size. To “make its guess”, every
time PGF encounters a coordinate, it updates the bounding box’s size such that it encompasses all these
coordinates. This will usually give a good approximation of the bounding box, but will not always be
accurate. First, the line thickness of diagonal lines is not taken into account correctly. Second, control
points of a curve often lie far “outside” the curve and make the bounding box too large. In this case,
you should use the [use as bounding box] option.

The following key influences the baseline of the resulting picture:

/tikz/baseline=(dimension or coordinate or default) (default Opt)

Normally, the lower end of the picture is put on the baseline of the surrounding text. For example,
when you give the code \tikz\draw(0,0)circle(.5ex);, PGF will find out that the lower end of
the picture is at —.5ex — 0.2pt (the 0.2pt are half the line width, which is 0.4pt) and that the upper
end is at .5ex + .5pt. Then, the lower end will be put on the baseline, resulting in the following: o.

Using this option, you can specify that the picture should be raised or lowered such that the height
(dimension) is on the baseline. For example, \tikz[baseline=0pt]\draw(0,0)circle(.5ex);
yields 4 since, now, the baseline is on the height of the z-axis.

This options is often useful for “inlined” graphics as in

A—s B $A \mathbin{\tikz[baseline] \draw[->>] (Opt,.5ex) -- (3ex,.5ex);} B$

Instead of a (dimension) you can also provide a coordinate in parentheses. Then the effect is to
put the baseline on the y-coordinate that the given {coordinate) has at the end of the picture. This
means that, at the end of the picture, the (coordinate) is evaluated and then the baseline is set to
the y-coordinate of the resulting point. This makes it easy to reference the y-coordinate of, say,
the baseline of nodes.

\usetikzlibrary {shapes.misc}
HGHOM FeTle

\tikz[baseline=(X.base)]
\node [cross out,draw] (X) {world.};

Top align: Top align:
L—— \tikz[baseline=(current bounding boz.north)]
\draw (0,0) rectangle (lcm,lex);

Use baseline=default to reset the baseline option to its initial configuration.

/tikz/execute at begin picture=(code) (no default)

This option causes (code) to be executed at the beginning of the picture. This option must be given
in the argument of the {tikzpicture} environment itself since this option will not have an effect
otherwise. After all, the picture has already “started” later on. The effect of multiply setting this
option accumulates.

This option is mainly used in styles like the every picture style to execute certain code at the
start of a picture.

/tikz/execute at end picture=(code) (no default)

This option installs (code) that will be executed at the end of the picture. Using this option multiple
times will cause the code to accumulate. This option must also be given in the optional argument
of the {tikzpicture} environment.

129

Y \usetikzlibrary {backgrounds}
\begin{tikzpicture}[execute at end picture=/
{
X \begin{pgfonlayert{background}
\path[fill=yellow, rounded corners]
(current bounding boz.south west) rectangle
(current bounding boz.north east);
\end{pgfonlayer}
H
\node at (0,0) {X};
\node at (2,1) {Y};
\end{tikzpicture}

All options “end” at the end of the picture. To set an option “globally” change the following style:

/tikz/every picture (style, initially empty)
This style is installed at the beginning of each picture.

\tikzset{every picture/.style=semithick}

Note that you should not use \tikzset to set options directly. For instance, if you want to use a
line width of 1pt by default, do not try to say \tikzset{line width=1pt} at the beginning of your
document. This will not work since the line width is changed in many places. Instead, say

\tikzset{every picture/.style={line width=1Ipt}}
This will have the desired effect.
In other TEX formats, you should use the following commands instead:

\tikzpicture [(options)]
(environment contents)
\endtikzpicture

This is the plain TEX version of the environment.

\starttikzpicture[{options)]
(environment contents)
\stoptikzpicture

This is the ConTEXt version of the environment.

12.2.2 Creating a Picture Using a Command

The following command is an alternative to {tikzpicture} that is particular useful for graphics consisting
of a single or few commands.

\tikz(animations spec) [{options)1{{path commands)}

This command places the (path commands) inside a {tikzpicture} environment. The (path commands)
may contain paragraphs and fragile material (like verbatim text).

If there is only one path command, it need not be surrounded by curly braces, if there are several,
you need to add them (this is similar to the \foreach statement and also to the rules in programming
languages like Java or C concerning the placement of curly braces).

Example: \tikz{\draw (0,0) rectangle (2ex,lex);} yields @
Example: \tikz \draw (0,0) rectangle (2ex,lex); yields =

12.2.3 Handling Catcodes and the Babel Package

Inside a TikZ picture, most symbols need to have the category code 12 (normal text) in order to ensure that
the parser works properly. This is typically not the case when packages like babel are used, which change
catcodes aggressively.

To solve this problem, TikZ provides a small library also called babel (which can, however, also be used
together with any other package that globally changes category codes). What it does is to reset the category

130

codes at the beginning of every {tikzpicture} and to restore them at the beginning of every node. In
almost all cases, this is exactly what you would expect and need, so I recommend to always load this library
by saying \usetikzlibrary{babell}. For details on what, exactly, happens with the category codes, see
Section 44.

12.2.4 Adding a Background

By default, pictures do not have any background, that is, they are “transparent” on all parts on which you
do not draw anything. You may instead wish to have a colored background behind your picture or a black
frame around it or lines above and below it or some other kind of decoration.

Since backgrounds are often not needed at all, the definition of styles for adding backgrounds has been
put in the library package backgrounds. This package is documented in Section 45.

12.3 Using Scopes to Structure a Picture

Inside a {tikzpicturel} environment you can create scopes using the {scope} environment. This environ-
ment is available only inside the {tikzpicture} environment, so once more, there is little chance of doing
anything wrong.

12.3.1 The Scope Environment

\begin{scope}{animations spec) [{options)]
(environment contents)
\end{scope}

All (options) are local to the (environment contents). Furthermore, the clipping path is also local to
the environment, that is, any clipping done inside the environment “ends” at its end.

\begin{tikzpicture}[ultra thick]
\begin{scope} [red]
\draw (Omm,10mm) -- (10mm,10mm) ;
\draw (Omm,8mm) -- (10mm,8mm) ;

\end{scope}

\draw (Omm,6mm) -- (10mm,6mm) ;

\begin{scope} [green]
\draw (Omm,4mm) -- (10mm,4mm) ;
\draw (Omm,2mm) -- (10mm,2mm) ;
\draw[blue] (Omm,Omm) -- (10mm,Omm) ;

\end{scope}

\end{tikzpicture}
/tikz/name=(scope name) (no default)

Assigns a name to a scope reference in animations. The name is a “high-level” name that drivers do
not see, so you can use spaces, number, letters, in a name, but you should not use any punctuation
like a dot, a comma, or a colon.

The following style influences scopes:

/tikz/every scope (style, initially empty)

This style is installed at the beginning of every scope.
The following options are useful for scopes:

/tikz/execute at begin scope=(code) (no default)

This option install some code that will be executed at the beginning of the scope. This option must
be given in the argument of the {scope} environment.

The effect applies only to the current scope, not to subscopes.

/tikz/execute at end scope=(code) (no default)

This option installs some code that will be executed at the end of the current scope. Using this
option multiple times will cause the code to accumulate. This option must also be given in the
optional argument of the {scopel} environment.

Again, the effect applies only to the current scope, not to subscopes.

131

\scope(animations spec) [{options)]
(environment contents)
\endscope

Plain TgX version of the environment.

\startscope(animations spec) [(options)]
(environment contents)
\stopscope

ConTEXt version of the environment.

12.3.2 Shorthand for Scope Environments
There is a small library that makes using scopes a bit easier:

TikZ Library scopes

\usetikzlibrary{scopes} % ERX and plain TX
\usetikzlibrary[scopes] % ConTgXt

This library defines a shorthand for starting and ending {scope} environments.

When this library is loaded, the following happens: At certain places inside a TikZ picture, it is allowed to
start a scope just using a single brace, provided the single brace is followed by options in square brackets:

\usetikzlibrary {scopes}
= \begin{tikzpicture}

{ [ultra thick]

{ [red]
\draw (Omm,10mm) -- (10mm,10mm) ;
\draw (Omm,8mm) -- (10mm,S8mm) ;
}
\draw (Omm,6mm) -- (10mm,6mm) ;
}
{ [green]

\draw (Omm,4mm) -- (10mm,4mm) ;
\draw (Omm,2mm) -- (10mm,2mm) ;
\draw[blue] (Omm,Omm) -- (10mm,Omm) ;
}
\end{tikzpicture}

In the above example, { [ultra thick] actually causes a \begin{scope}[ultra thick] to be inserted,
and the corresponding closing } causes an \end{scope} to be inserted.

The “certain places” where an opening brace has this special meaning are the following: First, right after
the semicolon that ends a path. Second, right after the end of a scope. Third, right at the beginning of a
scope, which includes the beginning of a picture. Also note that some square bracket must follow, otherwise
the brace is treated as a normal TEX scope.

12.3.3 Single Command Scopes

In some situations it is useful to create a scope for a single command. For instance, when you wish to use
algorithm graph drawing in order to layout a tree, the path of the tree needs to be surrounded by a scope
whose only purpose is to take a key that selects a layout for the scope. Similarly, in order to put something
on a background layer, a scope needs to be created. In such cases, where it will cumbersome to create a
\begin{scope} and \end{scope} pair just for a single command, the \scoped command may be useful:

\scoped(animations spec) [{options)]{path command)
This command works like \tikz, only you can use it inside a {tikzpicture}. It will take the following
(path command) and put it inside a {scope} with the (options) set. The (path command) may either
be a single command ended by a semicolon or it may contain multiple commands, but then they must
be surrounded by curly braces.

132

\usetikzlibrary {backgrounds}
\begin{tikzpicture}
\node [fill=white] at (1,1) {Hello world};
Hello world \scoped [on background layer]
\draw (0,0) grid (3,2);
\end{tikzpicture}

12.3.4 Using Scopes Inside Paths

The \path command, which is described in much more detail in later sections, also takes graphic options.
These options are local to the path. Furthermore, it is possible to create local scopes within a path simply
by using curly braces as in

\tikz \draw (0,0) -- (1,1)
{[rounded corners] -- (2,0) -- (3,1)}
- (3,00 - (2,1);

Note that many options apply only to the path as a whole and cannot be scoped in this way. For example,
it is not possible to scope the color of the path. See the explanations in the section on paths for more details.

Finally, certain elements that you specify in the argument to the \path command also take local options.
For example, a node specification takes options. In this case, the options apply only to the node, not to the
surrounding path.

12.4 Using Graphic Options
12.4.1 How Graphic Options Are Processed

Many commands and environments of TikZ accept options. These options are so-called key lists. To process
the options, the following command is used, which you can also call yourself. Note that it is usually better
not to call this command directly, since this will ensure that the effect of options are local to a well-defined
scope.

\tikzset{({options)}

This command will process the (options) using the \pgfkeys command, documented in detail in Sec-
tion 87, with the default path set to /tikz. Under normal circumstances, the (options) will be lists of
comma-separated pairs of the form (key)=(value), but more fancy things can happen when you use the
power of the pgfkeys mechanism, see Section 87 once more.

When a pair (key)=(value) is processed, the following happens:

1. If the (key) is a full key (starts with a slash) it is handled directly as described in Section 87.

2. Otherwise (which is usually the case), it is checked whether /tikz/(key) is a key and, if so, it is
executed.

Otherwise, it is checked whether /pgf/{key) is a key and, if so, it is executed.
Otherwise, it is checked whether (key) is a color and, if so, color=_key) is executed.
Otherwise, it is checked whether (key) contains a dash and, if so, arrows=({key) is executed.

Otherwise, it is checked whether (key) is the name of a shape and, if so, shape=(key) is executed.

N

Otherwise, an error message is printed.
Note that by the above description, all keys starting with /tikz and also all keys starting with /pgf
can be used as (key)s in an (options) list.

12.4.2 Using Styles to Manage How Pictures Look

There is a way of organizing sets of graphic options “orthogonally” to the normal scoping mechanism. For
example, you might wish all your “help lines” to be drawn in a certain way like, say, gray and thin (do not
dash them, that distracts). For this, you can use styles.

133

A style is a key that, when used, causes a set of graphic options to be processed. Once a style has been
defined, it can be used like any other key. For example, the predefined help lines style, which you should
use for lines in the background like grid lines or construction lines.

\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);

\begin{tikzpicture}
\end{tikzpicture}

Defining styles is also done using options. Suppose we wish to define a style called my style and when
this style is used, we want the draw color to be set to red and the fill color be set to red!20. To achieve
this, we use the following option:

my style/.style={draw=red,fill=red!20}

The meaning of the curious /.style is the following: “The key my style should not be used here but,
rather, be defined. So, set up things such that using the key my style will, in the following, have the same
effect as if we had written draw=red,fill=red!20 instead.”

Returning to the help lines example, suppose we prefer blue help lines. This could be achieved as
follows:

\begin{tikzpicture} [help lines/.style={blue!50,very thin}]
\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);

\end{tikzpicture}

Naturally, one of the main ideas behind styles is that they can be used in different pictures. In this case,
we have to use the \tikzset command somewhere at the beginning.

% ooc
\begin{tikzpicture}

\tikzset{help lines/.style={blue!50,very thin}}
\draw (0,0) grid +(2,2);

\draw[help lines] (2,0) grid +(2,2);
\end{tikzpicture}

Since styles are just special cases of pgfkeys’s general style facility, you can actually do quite a bit more.
Let us start with adding options to an already existing style. This is done using /.append style instead of
/ .style:

\begin{tikzpicture}[help lines/.append style=blue!50]
\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);

\end{tikzpicture}

In the above example, the option blue!50 is appended to the style help lines, which now has the same
effect as black!50,very thin,blue!50. Note that two colors are set, so the last one will “win”. There also
exists a handler called /.prefix style that adds something at the beginning of the style.

Just as normal keys, styles can be parameterized. This means that you write (style)=(value) when you
use the style instead of just (style). In this case, all occurrences of #1 in (style) are replaced by (value). Here
is an example that shows how this can be used.

\begin{tikzpicture} [outline/.style={draw=#1,thick,fill=#1/50}]
\node [outline=red] at (0,1) {red};
\node [outline=blue] at (0,0) {bluel};

- \end{tikzpicture}

red

134

For parameterized styles you can also set a default value using the /.default handler:

- \begin{tikzpicture} [outline/.style={draw=#1,thick,fill=#1/50},
outline/.default=black]

\node [outline] at (0,1) {default};
- \node [outline=blue] at (0,0) {blue};
\end{tikzpicture}

For more details on using and setting styles, see also Section 87.

135

13 Specifying Coordinates

13.1 Overview

A coordinate is a position on the canvas on which your picture is drawn. TikZ uses a special syntax for specify-
ing coordinates. Coordinates are always put in round brackets. The general syntax is ([{options)]{coordinate
specification)) .

The (coordinate specification) specifies coordinates using one of many different possible coordinate sys-
tems. Examples are the Cartesian coordinate system or polar coordinates or spherical coordinates. No
matter which coordinate system is used, in the end, a specific point on the canvas is represented by the
coordinate.

There are two ways of specifying which coordinate system should be used:

Explicitly You can specify the coordinate system explicitly. To do so, you give the name of the coordi-
nate system at the beginning, followed by cs:, which stands for “coordinate system”, followed by a
specification of the coordinate using the key—value syntax. Thus, the general syntax for (coordinate
specification) in the explicit case is ({coordinate system) cs:(list of key—value pairs specific to the
coordinate system)).

Implicitly The explicit specification is often too verbose when numerous coordinates should be given.
Because of this, for the coordinate systems that you are likely to use often a special syntax is provided.
TikZ will notice when you use a coordinate specified in a special syntax and will choose the correct
coordinate system automatically.

Here is an example in which explicit the coordinate systems are specified explicitly:

\draw[help lines] (0,0) grid (3,2);
\draw (canvas cs:x=0cm,y=2mm)
-- (canvas polar cs:radius=2cm,angle=30);
\end{tikzpicture}

\begin{tikzpicture}

In the next example, the coordinate systems are implicit:

\draw[help lines] (0,0) grid (3,2);
\draw (Ocm,2mm) -- (30:2cm);

\begin{tikzpicture}
\end{tikzpicture}

It is possible to give options that apply only to a single coordinate, although this makes sense for
transformation options only. To give transformation options for a single coordinate, give these options at
the beginning in brackets:

\begin{tikzpicture}

\draw[help lines] (0,0) grid (3,2);

\draw (0,0) -- (1,1);

\draw[red] (0,0) -- ([xshift=3pt] 1,1);

\draw (1,0) -- +(30:2cm);

\draw[red] (1,0) -- +([shift=(135:5pt)] 30:2cm) ;
\end{tikzpicture}

13.2 Coordinate Systems
13.2.1 Canvas, XYZ, and Polar Coordinate Systems
Let us start with the basic coordinate systems.

Coordinate system canvas

The simplest way of specifying a coordinate is to use the canvas coordinate system. You provide a
dimension d, using the x= option and another dimension d, using the y= option. The position on the
canvas is located at the position that is d, to the right and d, above the origin.

136

/tikz/cs/x=(dimension) (no default, initially Opt)

Distance by which the coordinate is to the right of the origin. You can also write things like 1cm+2pt
since the mathematical engine is used to evaluate the (dimension).

/tikz/cs/y=(dimension) (no default, initially Opt)

Distance by which the coordinate is above the origin.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\fill (canvas cs:x=1lcm,y=1.5cm) circle (2pt);
\fill (canvas cs:x=2cm,y=-5mm+2pt) circle (2pt);
\end{tikzpicture}

To specify a coordinate in the coordinate system implicitly, you use two dimensions that are separated
by a comma as in (Ocm,3pt) or (2cm, \textheight).

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

'
\fill (icm,1.5cm) circle (2pt);

\fill (2cm,-5mm+2pt) circle (2pt);
\end{tikzpicture}

Coordinate system xyz

The xyz coordinate system allows you to specify a point as a multiple of three vectors called the
x-, y-, and z-vectors. By default, the z-vector points lecm to the right, the y-vector points lcm up-
wards, but this can be changed arbitrarily as explained in Section 25.2. The default z-vector points to
(—3.85mm, —3.85mm).

To specify the factors by which the vectors should be multiplied before being added, you use the following
three options:

/tikz/cs/x={factor) (no default, initially 0)
Factor by which the x-vector is multiplied.

/tikz/cs/y=(factor) (no default, initially 0)
Works like x.

/tikz/cs/z={factor) (no default, initially 0)
Works like x.

\begin{tikzpicture}[->]
\draw (0,0) -- (xyz cs:x=1);
\draw (0,0) -- (xyz cs:y=1);
\draw (0,0) -- (xyz cs:z=1);
\end{tikzpicture}

This coordinate system can also be selected implicitly. To do so, you just provide two or three comma-
separated factors (not dimensions).

\begin{tikzpicture}[->]
\draw (0,0) -- (1,0);
\draw (0,0) -- (0,1,0);
\draw (0,0) -- (0,0,1);

\end{tikzpicture}

137

Note: It is possible to use coordinates like (1,2cm), which are neither canvas coordinates nor xyz
coordinates. The rule is the following: If a coordinate is of the implicit form ({z),(y)), then (z) and (y)
are checked, independently, whether they have a dimension or whether they are dimensionless. If both have
a dimension, the canvas coordinate system is used. If both lack a dimension, the xyz coordinate system is
used. If (z) has a dimension and (y) has not, then the sum of two coordinate ({z),0pt) and (0, (y)) is used.
If (y) has a dimension and (z) has not, then the sum of two coordinate ({z),0) and (Opt,(y)) is used.

Note furthermore: An expression like (2+3cm,0) does mot mean the same as (2cm+3cm,0). Instead, if
(z) or (y) internally uses a mixture of dimensions and dimensionless values, then all dimensionless values are
“upgraded” to dimensions by interpreting them as pt. So, 2+3cm is the same dimension as 2pt+3cm.

Coordinate system canvas polar
The canvas polar coordinate system allows you to specify polar coordinates. You provide an angle
using the angle= option and a radius using the radius= option. This yields the point on the canvas
that is at the given radius distance from the origin at the given degree. An angle of zero degrees to the
right, a degree of 90 upward.
/tikz/cs/angle=(degrees) (no default)

The angle of the coordinate. The angle must always be given in degrees.

/tikz/cs/radius=(dimension) (no default)

The distance from the origin.

/tikz/cs/x radius=(dimension) (no default)

A polar coordinate is, after all, just a point on a circle of the given (radius). When you provide an
z-radius and also a y-radius, you specify an ellipse instead of a circle. The radius option has the
same effect as specifying identical x radius and y radius options.

/tikz/cs/y radius=(dimension) (no default)

Works like x radius.

////// \tikz \draw (0,0) -- (canvas polar cs:angle=30,radius=1cm) ;

The implicit form for canvas polar coordinates is the following: you specify the angle and the distance,
separated by a colon as in (30:1cm).

\tikz \draw (Ocm,0cm) -- (30:1cm) -- (60:1cm) -- (90:1cm)
O —- (120:1cm) -- (150:1cm) -- (180:1cm);

Two different radii are specified by writing (30:1cm and 2cm).

For the implicit form, instead of an angle given as a number you can also use certain words. For example,
up is the same as 90, so that you can write \tikz \draw (0,0) -- (2ex,0pt) -- +(up:lex); and get
_1. Apart from up you can use down, left, right, north, south, west, east, north east, north west,
south east, south west, all of which have their natural meaning.

Coordinate system xyz polar

This coordinate system work similarly to the canvas polar system. However, the radius and the angle
are interpreted in the xy-coordinate system, not in the canvas system. More detailed, consider the circle
or ellipse whose half axes are given by the current z-vector and the current y-vector. Then, consider the
point that lies at a given angle on this ellipse, where an angle of zero is the same as the z-vector and

an angle of 90 is the y-vector. Finally, multiply the resulting vector by the given radius factor. Voila.
/tikz/cs/angle=(degrees) (no default)
The angle of the coordinate interpreted in the ellipse whose axes are the xz-vector and the y-vector.

/tikz/cs/radius=(factor) (no default)

A factor by which the z-vector and y-vector are multiplied prior to forming the ellipse.

138

/tikz/cs/x radius=(dimension)

(no default)

A specific factor by which only the z-vector is multiplied.

/tikz/cs/y radius=(dimension)

Works like x radius.

\draw
\draw
\draw
\draw

\draw

(0,0)
(0,0)
(0,0)
(0,0)

(xyz
(xyz
(xyz
(xyz

-- (xyz
-- (xyz
= Gz
-- (xyz

polar cs:
polar cs:
polar cs:
polar cs:

\end{tikzpicture}

polar
polar
polar
polar

cs

Ccs:
cs:
cs:

(no default)

\begin{tikzpicture} [x=1.5cm,y=1cm]
\\\\\\\ \draw[help lines] (Ocm,Ocm) grid (3cm,2cm);

rangle=0,radius=1);

angle=30,radius=1) ;
angle=60,radius=1) ;
angle=90,radius=1) ;

angle=0,radius=2)

angle=30,radius=2)
angle=60,radius=2)
angle=90,radius=2) ;

The implicit version of this option is the same as the implicit version of canvas polar, only you do not

provide a unit.

\tikz[x={(0cm, 1cm)},y={(-1cm, Ocm)}]
(0,0) -- (30:1) —- (60:1) -- (90:1)
-- (120:1) -- (150:1) —-- (180:1);

\draw

Coordinate system xy polar

This is just an alias for xyz polar, which some people might prefer as there is no z-coordinate involved

in the xyz polar coordinates.

13.2.2 Barycentric Systems

In the barycentric coordinate system a point is expressed as the linear combination of multiple vectors. The

idea is that you specify vectors vy, va, ...

specified by these vectors and numbers is

, Un, and numbers ay, as, .., a,. Then the barycentric coordinate

a1V1 + QU2 + - - + QpUy

o1 +ag -+ ap

The barycentric cs allows you to specify such coordinates easily.

Coordinate system barycentric

For this coordinate system, the (coordinate specification) should be a comma-separated list of expressions
of the form (node name)=(number). Note that (currently) the list should not contain any spaces before
or after the (node name) (unlike normal key—value pairs).

The specified coordinate is now computed as follows: Each pair provides one vector and a number. The
vector is the center anchor of the (node name). The number is the (number). Note that (currently)
you cannot specify a different anchor, so that in order to use, say, the north anchor of a node you first
have to create a new coordinate at this north anchor. (Using for instance \coordinate (mynorth) at

(mynode.north) ;.)

139

content oriented

ETEX
L Word PostScript
PDF

HTML

yaralal
\lele)
structure oriented form oriented
\begin{tikzpicture}
\coordinate (content) at (90:3cm);
\coordinate (structure) at (210:3cm);
\coordinate (form) at (-30:3cm);
\node [above] at (content) {content oriented};
\node [below left] at (structure) {structure oriented};
\node [below right] at (form) {form oriented};
\draw [thick,gray] (content.south) -- (structure.north east) -- (form.north west) -- cycle;
\small
\node at (barycentric cs:content=0.5,structure=0.1 ,form=1) {PostScript};
\node at (barycentric cs:content=1 ,structure=0 ,form=0.4) {DVI};
\node at (barycentric cs:content=0.5,structure=0.5 ,form=1) {PDF};
\node at (barycentric cs:content=0 ,structure=0.25,form=1) {CSs};
\node at (barycentric cs:content=0.5,structure=1 ,form=0) {XML};

\node at (barycentric cs:content=0.5,structure=1 ,form=0.4) {HTML};
\node at (barycentric cs:content=1 ,structure=0.2 ,form=0.8) {\TeX};
\node at (barycentric cs:content=1 ,structure=0.6 ,form=0.8) {\LaTeX};

\node at (barycentric cs:content=0.8,structure=0.8 ,form=1) {Word};
\node at (barycentric cs:content=1 ,structure=0.05,form=0.05) {ASCII};
\end{tikzpicture}

13.2.3 Node Coordinate System

In PGF and in TikZ it is quite easy to define a node that you wish to reference at a later point. Once you have
defined a node, there are different ways of referencing points of the node. To do so, you use the following
coordinate system:

Coordinate system node

This coordinate system is used to reference a specific point inside or on the border of a previously
defined node. It can be used in different ways, so let us go over them one by one.

You can use three options to specify which coordinate you mean:

/tikz/cs/name=(node name) (no default)

Specifies the node that you wish to use to specify a coordinate. The (node name) is the name that
was previously used to name the node using the name=(node name) option or the special node name
syntax.

/tikz/anchor=(anchor) (no default)

Specifies an anchor of the node. Here is an example:

140

class Shape

class Rectangle‘ class Circle ’class Ellipse

\usetikzlibrary {arrows.meta}

\begin{tikzpicture}
\node (shape) at (0,2) [draw] {l|class Shapell};
\node (rect) at (-2,0) [draw] {l|class Rectanglel};
\node (circle) at (2,0) [draw] {l|class Circlel|};
\node (ellipse) at (6,0) [draw] {l|class Ellipsel|};

\draw (node cs:name=circle,anchor=north) |- (0,1);

\draw (node cs:name=ellipse,anchor=north) |- (0,1);

\draw [arrows = -{Triangle[open, angle=60:3mm]}]
(node cs:name=rect,anchor=north)

|- (0,1) -| (node cs:name=shape,anchor=south);
\end{tikzpicture}
/tikz/cs/angle=(degrees) (no default)

It is also possible to provide an angle instead of an anchor. This coordinate refers to a point of
the node’s border where a ray shot from the center in the given angle hits the border. Here is an
example:

\usetikzlibrary {shapes.geometric}

\begin{tikzpicture}
\node (start) [draw,shape=ellipse]l {start};
\foreach \angle in {-90, -80, ..., 90}

\draw (node cs:name=start,angle=\angle)
. controls +(\angle:lcm) and +(-1,0) .. (2.5,0);
\end{tikzpicture}

It is possible to provide neither the anchor= option nor the angle= option. In this case, TikZ will
calculate an appropriate border position for you. Here is an example:

An ellips®

\usetikzlibrary {shapes.geometric}
\begin{tikzpicture}
\path (0,0) node(a) [ellipse,rotate=10,draw] {An ellipse}
(3,-1) node(b) [circle,draw] {A circle};
\draw[thick] (node cs:name=a) -- (node cs:name=b);
\end{tikzpicture}

TikZ will be reasonably clever at determining the border points that you “mean”, but, naturally, this
may fail in some situations. If TikZ fails to determine an appropriate border point, the center will be
used instead.

Automatic computation of anchors works only with the line-to operations --, the vertical /horizontal
versions |- and -|, and with the curve-to operation ... For other path commands, such as parabola or
plot, the center will be used. If this is not desired, you should give a named anchor or an angle anchor.
Note that if you use an automatic coordinate for both the start and the end of a line-to, as in —-

(node cs:name=b)--, then two border coordinates are computed with a move-to between them. This
is usually exactly what you want.

141

If you use relative coordinates together with automatic anchor coordinates, the relative coordinates are
computed relative to the node’s center, not relative to the border point. Here is an example:

\tikz \draw (0,0) node(x) [draw] {Text}
rectangle (1,1)
7 (node cs:name=x) -- +(1,1);
4

Similarly, in the following examples both control points are (1,1):

\tikz \draw (0,0) node(x) [draw] {X}
(2,0) node(y) {Y}
(node cs:name=x) .. controls +(1,1) and +(-1,1) ..
Y (node cs:name=y) ;

The implicit way of specifying the node coordinate system is to simply use the name of the node in
parentheses as in (a) or to specify a name together with an anchor or an angle separated by a dot as
in (a.north) or (a.10).

Here is a more complete example:

<ﬁ“’ms€

e

\usetikzlibrary {shapes.geometric}
\begin{tikzpicture} [fill=blue!/20]
\draw[help lines] (-1,-2) grid (6,3);
\path (0,0) node(a) [ellipse,rotate=10,draw,fill] {An ellipse}
(3,-1) node(b) [circle,draw,fill] {A circle}
(2,2) node(c) [rectangle,rotate=20,draw,fill] {A rectangle}
(5,2) node(d) [rectangle,rotate=-30,draw,fill] {Another rectangle};
\draw[thick] (a.south) -- (b) -- (c) -- (d);
\draw[thick,red,->] (a) |- +(1,3) -| (c) |- (b);
\draw [thick,blue,<->] (b) .. controls +(right:2cm) and +(down:1lcm) .. (d);
\end{tikzpicture}

13.2.4 Tangent Coordinate Systems

Coordinate system tangent

This coordinate system, which is available only when the TikZ library calc is loaded, allows you to
compute the point that lies tangent to a shape. In detail, consider a (node) and a (point). Now, draw a
straight line from the (point) so that it “touches” the (node) (more formally, so that it is tangent to this
(node)). The point where the line touches the shape is the point referred to by the tangent coordinate
system.

The following options may be given:

/tikz/cs/node=(node) (no default)
This key specifies the node on whose border the tangent should lie.

/tikz/cs/point=({point) (no default)
This key specifies the point through which the tangent should go.

142

/tikz/cs/solution=(number) (no default)

Specifies which solution should be used if there are more than one.

A special algorithm is needed in order to compute the tangent for a given shape. Currently, tangents
can be computed for nodes whose shape is one of the following:

e coordinate

e circle

\usetikzlibrary {calc}

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\\\\‘ \coordinate (a) at (3,2);

\node [circle,draw] (c) at (1,1) [minimum size=40pt] {c};

\draw[red] (a) -- (tangent cs:node=c,point={(a)},solution=1) --
(c.center) -- (tangent cs:node=c,point={(a)},solution=2) -- cycle;
\end{tikzpicture}

There is no implicit syntax for this coordinate system.

13.2.5 Defining New Coordinate Systems

While the set of coordinate systems that TikZ can parse via their special syntax is fixed, it is possible and
quite easy to define new explicitly named coordinate systems. For this, the following commands are used:

\tikzdeclarecoordinatesystem{(name)}{{code)}

This command declares a new coordinate system named (name) that can later on be used by writing
({name) cs:(arguments)). When TikZ encounters a coordinate specified in this way, the (arguments)
are passed to (code) as argument #1.

It is now the job of (code) to make sense of the (arguments). At the end of (code), the two TEX
dimensions \pgf@x and \pgf@y should be have the z- and y-canvas coordinate of the coordinate.

It is not necessary, but customary, to parse {arguments) using the key—value syntax. However, you can
also parse it in any way you like.

In the following example, a coordinate system cylindrical is defined.

. \makeatletter
. \define@key{cylindricalkeys}{angle}{\def\myangle{#1}}
\define@key{cylindricalkeys}{radius}{\def\myradius{#1}}
. \define@key{cylindricalkeys}{z}{\def\myz{#1}}
\tikzdeclarecoordinatesystem{cylindricall}/
{7
\setkeys{cylindricalkeys}{#1}/
\pgfpointadd{\pgfpointxyz{0}{0}+{\myz}}{\pgfpointpolarxy{\myangle}{\myradius}t}

\begin{tikzpicture} [z=0.2pt]
\draw [->] (0,0,0) -- (0,0,350);

\foreach \num in {0,10,...,350}
\fill (cylindrical cs:angle=\num,radius=1,z=\num) circle (1pt);
\end{tikzpicture}

\tikzaliascoordinatesystem{({new name)}{(old name)}

Creates an alias of (old name).

13.3 Coordinates at Intersections

You will wish to compute the intersection of two paths. For the special and frequent case of two perpen-
dicular lines, a special coordinate system called perpendicular is available. For more general cases, the
intersections library can be used.

143

13.3.1 Intersections of Perpendicular Lines

A frequent special case of path intersections is the intersection of a vertical line going through a point p and
a horizontal line going through some other point ¢. For this situation there is a useful coordinate system.

Coordinate system perpendicular

You can specify the two lines using the following keys:

/tikz/cs/horizontal line through={({coordinate))? (no default)

Specifies that one line is a horizontal line that goes through the given coordinate.

/tikz/cs/vertical line through={({coordinate))} (no default)

Specifies that the other line is vertical and goes through the given coordinate.

However, in almost all cases you should, instead, use the implicit syntax. Here, you write ({(p) |- (g))

or ((¢) -1 (p).
For example, (2,1 |- 3,4) and (3,4 -| 2,1) both yield the same as (2,4) (provided the zy-coordi-
nate system has not been modified).

The most useful application of the syntax is to draw a line up to some point on a vertical or horizontal
line. Here is an example:

a0 \begin{tikzpicture}

\path (30:1cm) node(pl) {p_1} (75:1cm) node(p2) {p_2};
b2

D1 \draw (-0.2,0) -- (1.2,0) node(xline) [right] {q_1};
q \draw (2,-0.2) -- (2,1.2) node(yline) [above] {q_2};
1
\draw[->] (p1) -- (pl |- xline);
\draw[->] (p2) -- (p2 |- xline);
\draw[->] (p1) -- (pl -| yline);

\draw[->] (p2) -- (p2 -| yline);
\end{tikzpicture}

Note that in ((¢) |- (d)) the coordinates {c) and (d) are not surrounded by parentheses. If they need
to be complicated expressions (like a computation using the $-syntax), you must surround them with
braces; parentheses will then be added around them.

As an example, let us specify a point that lies horizontally at the middle of the line from A to B and
vertically at the middle of the line from C to D:

B \usetikzlibrary {calc}

x X \begin{tikzpicture}
A \node (A) at (0,1) {A};
\node (B) at (1,1.5) {B};
\node (C) at (2,0) {C};
C \node (D) at (2.5,-2) {D};

\draw (A) -- (B) node [midway] {x};
\draw (C) -- (D) node [midway] {x};

\node at ({$(A)!.5!(B)$} -| {$(C)!.5!'(D)$}) {X};
D \end{tikzpicture}

13.3.2 Intersections of Arbitrary Paths

TikZ Library intersections
\usetikzlibrary{intersections} % BX and plain TX
\usetikzlibrary[intersections] % ConTgXt

This library enables the calculation of intersections of two arbitrary paths. However, due to the low
accuracy of TEX, the paths should not be “too complicated”. In particular, you should not try to
intersect paths consisting of lots of very small segments such as plots or decorated paths.

144

To find the intersections of two paths in TikZ, they must be “named”. A “named path” is, quite simply,
a path that has been named using the following key (note that this is a different key from the name key,
which only attaches a hyperlink target to a path, but does not store the path in a way the is useful for the
intersection computation):

/tikz/name path=(name) (no default)
/tikz/name path global=(name) (no default)

The effect of this key is that, after the path has been constructed, just before it is used, it is associated
with (name). For name path, this association survives beyond the final semi-colon of the path but not
the end of the surrounding scope. For name path global, the association will survive beyond any scope
as well. Handle with care.

Any paths created by nodes on the (main) path are ignored, unless this key is explicitly used. If the
same (name) is used for the main path and the node path(s), then the paths will be added together and
then associated with (name).

To find the intersection of named paths, the following key is used:

/tikz/name intersections={(options)} (no default)

This key changes the key path to /tikz/intersection and processes (options). These options de-
termine, among other things, which paths to use for the intersection. Having processed the options,
any intersections are then found. A coordinate is created at each intersection, which by default, will
be named intersection-1, intersection-2, and so on. Optionally, the prefix intersection can be

changed, and the total number of intersections stored in a TEX-macro.
\usetikzlibrary {intersections}
% \begin{tikzpicture}[every node/.style={opacity=1, black, above leftl}]

ﬁ \draw [help lines] grid (3,2);

—
\/Z/ﬁ/ > \draw [name path=ellipse] (2,0.5) ellipse (0.75cm and 1cm);

\draw [name path=rectangle, rotate=10] (0.5,0.5) rectangle +(2,1);
\fill [red, opacity=0.5, name intersections={of=ellipse and rectangle}]
(intersection-1) circle (2pt) node {1}
(intersection-2) circle (2pt) node {2};
\end{tikzpicture}

The following keys can be used in (options):

/tikz/intersection/of=(name path 1) and (name path 2) (no default)

This key is used to specify the names of the paths to use for the intersection.

/tikz/intersection/name=(prefiz) (no default, initially intersection)

This key specifies the prefix name for the coordinate nodes placed at each intersection.

/tikz/intersection/total=(macro) (no default)

This key means that the total number of intersections found will be stored in (macro).

\usetikzlibrary {intersections}
\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);

afd o
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
q& \draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);
\fill [name intersections={of=curve 1 and curve 2, name=%, total=\t}]
1

[red, opacity=0.5, every node/.style={above left, black, opacity=1}]
\foreach \s in {1,...,\t}{(i-\s) circle (2pt) node {\footnotesize\sl}};

>
' \end{tikzpicture}

/tikz/intersection/by=(comma-separated list) (no default)

This key allows you to specify a list of names for the intersection coordinates. The intersection
coordinates will still be named (prefiz)-(number), but additionally the first coordinate will also

145

be named by the first element of the (comma-separated list). What happens is that the (comma-
separated list) is passed to the \foreach statement and for (list member) a coordinate is created
at the already-named intersection.

\usetikzlibrary {intersections}

\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
\draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);

\fill [name intersections={of=curve 1 and curve 2, by={a,b}}]
(a) circle (2pt)
(b) circle (2pt);
\end{tikzpicture}

You can also use the ... notation of the \foreach statement inside the (comma-separated list).

In case an element of the (comma-separated list) starts with options in square brackets, these
options are used when the coordinate is created. A coordinate name can still, but need not, follow
the options. This makes it easy to add labels to intersections:

\usetikzlibrary {intersections}

\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
\draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);

\fill [name intersections={
of=curve 1 and curve 2,

by={[label=center:a], [label=center:...], [label=center:i]}}];
\end{tikzpicture}

/tikz/intersection/sort by=(path name) (no default)

By default, the intersections are simply returned in the order that the intersection algorithm finds
them. Unfortunately, this is not necessarily a “helpful” ordering. This key can be used to sort the
intersections along the path specified by (path name), which should be one of the paths mentioned
in the /tikz/intersection/of key.

\usetikzlibrary {intersections}

\begin{tikzpicture}
3 1 \clip (-0.5,-0.75) rectangle (3.25,2.25);
\foreach \pathname/\shift in {line/Ocm, curve/2cm}{
2 2 \tikzset{xshift=\shift}
\draw [->, name path=curvel (1,1.5) .. controls (-1,1) and (2,0.5) .. (0,0);
1 3 \draw [->, name path=1line] (0,-.5) -- (1,2) ;

\fill [name intersections={of=line and curve,sort by=\pathname, name=7i}]
[red, opacity=0.5, every node/.style={left=.25cm, black, opacity=1}]
\foreach \s in {1,2,3}{(i-\s) circle (2pt) node {\footnotesize\s}};

}
\end{tikzpicture}

13.4 Relative and Incremental Coordinates
13.4.1 Specifying Relative Coordinates

You can prefix coordinates by ++ to make them “relative”. A coordinate such as ++(1cm,Opt) means “lcm

to the right of the previous position, making this the new current position”. Relative coordinates are often
useful in “local” contexts:

146

\begin{tikzpicture}
\draw (0,0) -= ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\draw (2,0) -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\draw (1.5,1.5) -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\end{tikzpicture}

Instead of ++ you can also use a single +. This also specifies a relative coordinate, but it does not “update”
the current point for subsequent usages of relative coordinates. Thus, you can use this notation to specify
numerous points, all relative to the same “initial” point:

\begin{tikzpicture}
\draw (0,0) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\draw (2,0) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\draw (1.5,1.5) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\end{tikzpicture}

There is a special situation, where relative coordinates are interpreted differently. If you use a relative
coordinate as a control point of a Bézier curve, the following rule applies: First, a relative first control point
is taken relative to the beginning of the curve. Second, a relative second control point is taken relative to
the end of the curve. Third, a relative end point of a curve is taken relative to the start of the curve.

This special behavior makes it easy to specify that a curve should “leave or arrive from a certain direction”
at the start or end. In the following example, the curve “leaves” at 30° and “arrives” at 60°:

\begin{tikzpicture}
\draw (1,0) .. controls +(30:1cm) and +(60:1cm) .. (3,-1);
\draw [gray,->] (1,0) -- +(30:1cm);
\draw[gray,<-] (3,-1) -- +(60:1cm);

\end{tikzpicture}

13.4.2 Rotational Relative Coordinates

You may sometimes wish to specify points relative not only to the previous point, but additionally relative
to the tangent entering the previous point. For this, the following key is useful:

/tikz/turn (no value)

This key can be given as an option to a (coordinate) as in the following example:

///////\\\\\\ \tikz \draw (0,0) -- (1,1) -- ([turn]-45:1cm) -- ([turn]-30:1cm);

The effect of this key is to locally shift the coordinate system so that the last point reached is at the
origin and the coordinate system is “turned” so that the z-axis points in the direction of a tangent
entering the last point. This means, in effect, that when you use polar coordinates of the form (relative
angle) : (distance) together with the turn option, you specify a point that lies at (distance) from the last
point in the direction of the last tangent entering the last point, but with a rotation of (relative angle).

This key also works with curves ...

\tikz [delta angle=30, radius=1cm]

\draw (0,0) arc [start angle=0] -- ([turn]O:icm)
arc [start angle=30] -- ([turn]O:1cm)
arc [start angle=60] -- ([turn]30:1icm);

147

/////////,._________ \tikz \draw (0,0) to [bend left] (2,1) -- ([turn]O:icm);

..and with plots ...

//////A\\\\\\g////// \tikz \draw plot coordinates {(0,0) (1,1) (2,0) (3,0) } -- ([turn]30:1icm);

Although the above examples use polar coordinates with turn, you can also use any normal coordinate.
For instance, ([turn]1,1) will append a line of length v/2 that is turns by 45° relative to the tangent
to the last point.

\tikz \draw (0.5,0.5) -| (2,1) -- ([turn]i,1)
. controls ([turn]O:1cm) .. ([turn]-90:1cm);

13.4.3 Relative Coordinates and Scopes

An interesting question is, how do relative coordinates behave in the presence of scopes? That is, suppose
we use curly braces in a path to make part of it “local”, how does that affect the current position? On the
one hand, the current position certainly changes since the scope only affects options, not the path itself. On
the other hand, it may be useful to “temporarily escape” from the updating of the current point.

Since both interpretations of how the current point and scopes should “interact” are useful, there is a
(local!) option that allows you to decide which you need.

/tikz/current point is local=(boolean) (no default, initially false)

Normally, the scope path operation has no effect on the current point. That is, curly braces on a path
have no effect on the current position:

\begin{tikzpicture}
\draw (0,0) —-- ++(1,0) -- ++(0,1) -= ++(-1,0);
\draw[red] (2,0) -= ++(1,0) { -= ++(0,1) } -- ++(-1,0);
\end{tikzpicture}

If you set this key to true, this behavior changes. In this case, at the end of a group created on a path,
the last current position reverts to whatever value it had at the beginning of the scope. More precisely,
when TikZ encounters } on a path, it checks whether at this particular moment the key is set to true.
If so, the current position reverts to the value it had when the matching { was read.
-] \begin{tikzpicture}

\draw (0,0) -- ++(1,0) -- ++(0,1) -- ++(-1,0);

\draw[red] (2,0) -- ++(1,0)

{ [current point is locall -- ++(0,1) } -- ++(-1,0);

\end{tikzpicture}

In the above example, we could also have given the option outside the scope, for instance as a parameter
to the whole scope.

13.5 Coordinate Calculations

TikZ Library calc

\usetikzlibrary{calc} % BX and plain TX
\usetikzlibrary[calc] % ConTXt

148

You need to load this library in order to use the coordinate calculation functions described in the present
section.

It is possible to do some basic calculations that involve coordinates. In essence, you can add and subtract
coordinates, scale them, compute midpoints, and do projections. For instance, ($(a) + 1/3*(1cm,0)$) is
the coordinate that is 1/3cm to the right of the point a:

\begin{tikzpicture}

\usetikzlibrary {calc}
\draw [help lines] (0,0) grid (3,2);

\node (a) at (1,1) {A};
\fill [red] ($(a) + 1/3*(1cm,0)$) circle (2pt);
\end{tikzpicture}

|

13.5.1 The General Syntax

The general syntax is the following:
([{options)]${coordinate computation)$).

As you can see, the syntax uses the TEX math symbol $ to indicate that a “mathematical computation”
is involved. However, the $ has no other effect, in particular, no mathematical text is typeset.
The (coordinate computation) has the following structure:

1. It starts with
(factor)*{coordinate) (modifiers)
2. This is optionally followed by + or - and then another
(factor)*{coordinate) (modifiers)
3. This is once more followed by + or - and another of the above modified coordinate; and so on.

In the following, the syntax of factors and of the different modifiers is explained in detail.

13.5.2 The Syntax of Factors

The (factor)s are optional and detected by checking whether the (coordinate computation) starts with a (.
Also, after each + a (factor) is present if, and only if, the + or - sign is not directly followed by (.

If a (factor) is present, it is evaluated using the \pgfmathparse macro. This means that you can use
pretty complicated computations inside a factor. A (factor) may even contain opening parentheses, which
creates a complication: How does TikZ know where a (factor) ends and where a coordinate starts? For
instance, if the beginning of a (coordinate computation) is 2% (3+4..., it is not clear whether 3+4 is part of a
(coordinate) or part of a (factor). Because of this, the following rule is used: Once it has been determined,
that a (factor) is present, in principle, the (factor) contains everything up to the next occurrence of *(.
Note that there is no space between the asterisk and the parenthesis.

It is permissible to put the (factor) in curly braces. This can be used whenever it is unclear where the
(factor) would end.

Here are some examples of coordinate specifications that consist of exactly one (factor) and one
(coordinate):

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

\fill [red] ($2*(1,1)$) circle (2pt);

\fill [green] (${1+1}*(1,.5)$) circle (2pt);

\fill [blue] ($cos(0)*sin(90)*(1,1)$) circle (2pt);

\fill [black] (${3%(4-3)}*(1,0.5)$) circle (2pt);
\end{tikzpicture}

T \usetikzlibrary {calc}

149

13.5.3 The Syntax of Partway Modifiers

A (coordinate) can be followed by different (modifiers). The first kind of modifier is the partway modifier.
The syntax (which is loosely inspired by Uwe Kern’s xcolor package) is the following:

(coordinate) ! (number) ! (angle) : (second coordinate)
One could write for instance
(1,2)!.751(3,4)

The meaning of this is: “Use the coordinate that is three quarters on the way from (1,2) to (3,4).
In general, {coordinate x)!(number)!{coordinate y) yields the coordinate (1 — (number)){coordinate x) +
(number){coordinate y). Note that this is a bit different from the way the (number) is interpreted in the
xcolor package: First, you use a factor between 0 and 1, not a percentage, and, second, as the (number)
approaches 1, we approach the second coordinate, not the first. It is permissible to use a (number) that is
smaller than 0 or larger than 1. The (number) is evaluated using the \pgfmathparse command and, thus,
it can involve complicated computations.

\usetikzlibrary {calc}
/ \begin{tikzpicture}

\draw [help lines] (0,0) grid (3,2);

\draw (1,0) -- (3,2);

\foreach \i in {0,0.2,0.5,0.9,1}
\node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}

The (second coordinate) may be prefixed by an (angle), separated with a colon, asin (1,1)!.5160:(2,2).
The general meaning of (a)!(factor)!{angle): (b) is: “First, consider the line from (a) to (b). Then rotate
this line by (angle) around the point {(a). Then the two endpoints of this line will be (a) and some point (c).
Use this point (c) for the subsequent computation, namely the partway computation.”

Here are two examples:

\usetikzlibrary {calc}
\begin{tikzpicture}
7 \draw [help lines] (0,0) grid (3,3);

\coordinate (a) at (1,0);
’/ \coordinate (b) at (3,2);

\draw[->] (a) -- (b);

\coordinate (c) at ($ (a)!1! 10:(b) $);
\draw[->,red] (a) -- (c);

\fill ($ (a)!.5! 10:(b) $) circle (2pt);
\end{tikzpicture}

\usetikzlibrary {calc}
\begin{tikzpicture}
\draw [help lines] (0,0) grid (4,4);

\foreach \i in {0,0.125,...,2}
\fill ($(2,2) !\i! \i*180:(3,2)$) circle (2pt);
\end{tikzpicture}

150

You can repeatedly apply modifiers. That is, after any modifier you can add another (possibly different)
modifier.

\usetikzlibrary {calc}
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

~—_| \draw (0,0) -- (3,2);

\draw[red] ($(0,0)!.3!(3,2)$) -- (3,0);
\filllred] ($(0,0)!.3!(3,2)!.7!(3,00$) circle (2pt);
\end{tikzpicture}

13.5.4 The Syntax of Distance Modifiers

A distance modifier has nearly the same syntax as a partway modifier, only you use a (dimension) (something
like 1cm) instead of a (factor) (something like 0.5):

(coordinate) ! (dimension) ! (angle) : (second coordinate)

When you write (a)!(dimension)!(b), this means the following: Use the point that is distanced
(dimension) from (a) on the straight line from (a) to (b). Here is an example:

\usetikzlibrary {calc}
\begin{tikzpicture}

\draw [help lines] (0,0) grid (3,2);

15 m
! \draw (1,0) - (3,2);
Oct \foreach \i in {Ocm,1lcm,15mm}
\node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}

As before, if you use a (angle), the (second coordinate) is rotated by this much around the (coordinate)
before it is used.

The combination of an (angle) of 90 degrees with a distance can be used to “offset” a point relative to
a line. Suppose, for instance, that you have computed a point (c) that lies somewhere on a line from (a)
to (b) and you now wish to offset this point by 1cm so that the distance from this offset point to the line is
1cm. This can be achieved as follows:

\begin{tikzpicture}

\usetikzlibrary {calc}
\draw [help lines] (0,0) grid (3,2);

2 \coordinate (a) at (1,0);
\coordinate (b) at (3,1);

\

\draw (a) -- (b);

\coordinate (c) at ($ (a)!.25!(b) $);
\coordinate (d) at ($ (c)!1cm!90:(b) $);

\draw [<->] (c) -- (d) node [sloped,midway,above] {lcm};
\end{tikzpicture}

13.5.5 The Syntax of Projection Modifiers

The projection modifier is also similar to the above modifiers: It also gives a point on a line from the
(coordinate) to the (second coordinate). However, the (number) or (dimension) is replaced by a (projection
coordinate):

(coordinate) ! (projection coordinate)! {angle): (second coordinate)
Here is an example:
(1,2)1(0,5)!(3,4)

The effect is the following: We project the (projection coordinate) orthogonally onto the line from
(coordinate) to (second coordinate). This makes it easy to compute projected points:

151

\usetikzlibrary {calc}
\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

/I

\coordinate (a) at (0,1);
\coordinate (b) at (3,2);

\coordinate (c) at (2.5,0);

\draw (a) -- (b) -- (c) -- cycle;
\draw[red] (@ -- ($Mm!'@!'EC)$);
\draw [orange] (b) -- ($(a)!(b)!(c)$);

\draw [blue] (c) —— ($(@)'(e)'(®)$);
\end{tikzpicture}

152

14 Syntax for Path Specifications

A path is a series of straight and curved line segments. It is specified following a \path command and the
specification must follow a special syntax, which is described in the subsections of the present section.

\path(specification);
This command is available only inside a {tikzpicture} environment.

The (specification) is a long stream of path operations. Most of these path operations tell TikZ how the
path is built. For example, when you write ——(0,0), you use a line-to operation and it means “continue
the path from wherever you are to the origin”.

At any point where TikZ expects a path operation, you can also give some graphic options, which is a
list of options in brackets, such as [rounded corners]. These options can have different effects:

1. Some options take “immediate” effect and apply to all subsequent path operations on the path. For
example, the rounded corners option will round all following corners, but not the corners “before”
and if the sharp corners is given later on the path (in a new set of brackets), the rounding effect
will end.

\tikz \draw (0,0) -- (1,1)
[rounded corners] -- (2,0) -- (3,1)
[sharp corners] -- (3,0) -- (2,1);

¢

Another example are the transformation options, which also apply only to subsequent coordinates.

2. The options that have immediate effect can be “scoped” by putting part of a path in curly braces.
For example, the above example could also be written as follows:

\tikz \draw (0,0) -- (1,1)
{[rounded corners] -- (2,0) -- (3,1)}
= (B,0) = @,i)¢

¢

3. Some options only apply to the path as a whole. For example, the color= option for determining
the color used for, say, drawing the path always applies to all parts of the path. If several different
colors are given for different parts of the path, only the last one (on the outermost scope) “wins”:

\tikz \draw (0,0) -- (1,1)
[color=red] -- (2,0) -- (3,1)
[color=blue] -- (3,0) -- (2,1);

¢

Most options are of this type. In the above example, we would have had to “split up” the path
into several \path commands:

\tikz{\draw (0,0) -- (1,1);
\draw [color=red] (1,1) -- (2,0) -- (3,1);
\draw [color=blue] (3,1) -- (3,0) -- (2,1);}

¢

By default, the \path command does “nothing” with the path, it just “throws it away”. Thus, if you
write \path(0,0)--(1,1);, nothing is drawn in your picture. The only effect is that the area occupied
by the picture is (possibly) enlarged so that the path fits inside the area. To actually “do” something
with the path, an option like draw or £ill must be given somewhere on the path. Commands like
\draw do this implicitly.

Finally, it is also possible to give node specifications on a path. Such specifications can come at different
locations, but they are always allowed when a normal path operation could follow. A node specification
starts with node. Basically, the effect is to typeset the node’s text as normal TEX text and to place it
at the “current location” on the path. The details are explained in Section 17.

Note, however, that the nodes are not part of the path in any way. Rather, after everything has been
done with the path what is specified by the path options (like filling and drawing the path due to a £i1l
and a draw option somewhere in the (specification)), the nodes are added in a post-processing step.

153

Note: When scanning for path operations TikZ expands tokens looking for valid path operations. This
however implies that these tokens has to be fully expandable up to the point where it results in a valid
path operation.

/tikz/name=(path name) (no default)

Assigns a name to the path for reference (specifically, for reference in animations; for reference in
intersections, use the name path command, which has a different purpose, see the intersections
library for details). Since the name is a “high-level” name (drivers never know of it), you can use
spaces, number, letters, or whatever you like when naming a path, but the name may not contain any
punctuation like a dot, a comma, or a colon.

The following style influences scopes:

/tikz/every path (style, initially empty)

This style is installed at the beginning of every path. This can be useful for (temporarily) adding, say,
the draw option to everything in a scope.

\begin{tikzpicture}
[fill=yellow!80!black, % only sets the color
every path/.style={draw}] 7 all paths are drawn

\fill (0,0) rectangle +(1,1);
\shade (2,0) rectangle +(1,1);
\end{tikzpicture}

/tikz/insert path=(path) (no default)

This key can be used inside an option to add something to the current path. This is mostly useful for
defining styles that create graphic contents. This option should be used with care, for instance it should
not be used as an argument of, say, a node. In the following example, we use a style to add little circles
to a path.

\tikz [c/.style={insert path={circle[radius=2pt]}}]
\draw (0,0) -- (1,1) [c] -- (3,2) [c];

The effect is the same as of (0,0) -- (1,1) circle[radius=2pt] -- (3,2) circle[radius=2pt].
The following options are for experts only:

/tikz/append after command=(path) (no default)

Some of the path commands described in the following sections take optional arguments. For these
commands, when you use this key inside these options, the (path) will be inserted after the path
command is done. For instance, when you give this command in the option list of a node, the (path)
will be added after the node. This is used by, for instance, the label option to allow you to specify a
label in the option list of a node, but have this 1abel cause a node to be added after another node.

\tikz \draw node [append after command={(foo)--(1,1)},draw] (foo){foo};

If this key is called multiple times, the effects accumulate, that is, all of the paths are added in the order
to keys were found.

/tikz/prefix after command=(path) (no default)

Works like append after command, only the accumulation order is inverse: The (path) is added before
any earlier paths added using either append after command or prefix after command.

154

14.1 The Move-To Operation

The perhaps simplest operation is the move-to operation, which is specified by just giving a coordinate where
a path operation is expected.

\path .. {coordinate) ...;

The move-to operation normally starts a path at a certain point. This does not cause a line segment to
be created, but it specifies the starting point of the next segment. If a path is already under construction,
that is, if several segments have already been created, a move-to operation will start a new part of the
path that is not connected to any of the previous segments.

\begin{tikzpicture}
\draw (0,0) --(2,0) (0,1) --(2,1);
\end{tikzpicture}

In the specification (0,0) --(2,0) (0,1) --(2,1) two move-to operations are specified: (0,0) and
(0,1). The other two operations, namely --(2,0) and --(2,1) are line-to operations, described next.

There is special coordinate called current subpath start that is always at the position of the last
move-to operation on the current path.

\tikz [line width=2mm]
\draw (0,0) -- (1,0) -- (1,1)
-- (0,1) -- (current subpath start);

Note how in the above example the path is not closed (as -—cycle would do). Rather, the line just starts
and ends at the origin without being a closed path.

14.2 The Line-To Operation
14.2.1 Straight Lines

\path .. -=(coordinate or cycle) ..;

The line-to operation extends the current path from the current point in a straight line to the given
(coordinate) (the “or cycle” part is explained in a moment). The “current point” is the endpoint of the
previous drawing operation or the point specified by a prior move-to operation.

When a line-to operation is used and some path segment has just been constructed, for example by
another line-to operation, the two line segments become joined. This means that if they are drawn, the
point where they meet is “joined” smoothly. To appreciate the difference, consider the following two
examples: In the left example, the path consists of two path segments that are not joined, but they
happen to share a point, while in the right example a smooth join is shown.

\begin{tikzpicture}[line width=10pt]

\draw (0,0) --(1,1) (1,1) --(2,0);

\draw (3,0) —- (4,1) -- (5,0);

\useasboundingbox (0,1.5); % make bounding box higher
\end{tikzpicture}

Instead of a coordinate following the two minus signs, you can also use the text cycle. This causes the
straight line from the current point to go to the last point specified by a move-to operation. Note that
this need not be the beginning of the path. Furthermore, a smooth join is created between the first
segment created after the last move-to operation and the straight line appended by the cycle operation.

Consider the following example. In the left example, two triangles are created using three straight lines,
but they are not joined at the ends. In the second example cycle operations are used.

155

4d4 44

\begin{tikzpicture}[line width=10pt]
\draw (0,0) -- (1,1) -- (1,0) -- (0,0) (2,0) -- (3,1) —-- (3,0) -- (2,0);
\draw (5,0) -- (6,1) -- (6,0) -- cycle (7,0) -- (8,1) -- (8,0) -- cycle;
\useasboundingbox (0,1.5); 7 make bounding boz higher

\end{tikzpicture}

Writing cycle instead of a coordinate at the end of a path operation is possible with all path operations
that end with a coordinate (such as == or .. or sin or grid, but not graph or plot). In all cases, the effect
is that the coordinate of the last moveto is used as the coordinate expected by the path operation and that
a smooth join is added. (What actually happens that the text cycle used with any path operation other
than -- gets replaced by (current subpath start)--cycle.)

14.2.2 Horizontal and Vertical Lines

Sometimes you want to connect two points via straight lines that are only horizontal and vertical. For this,
you can use two path construction operations.

\path .. =|{coordinate or cycle) ...;

This operation means “first horizontal, then vertical”.

\begin{tikzpicture}
E \draw (0,0) node(a) [draw] {A} (1,1) node(b) [draw] {B};
\draw (a.north) |- (b.west);
\draw[color=red] (a.east) -| (2,1.5) -| (b.north);
\end{tikzpicture}

Instead of a coordinate you can also write cycle to close the path:
\begin{tikzpicture}[ultra thick]
\draw (0,0) -- (1,1) -| cycle;
\end{tikzpicture}

\path .. |=(coordinate or cycle) ...;

This operations means “first vertical, then horizontal”.

14.3 The Curve-To Operation

The curve-to operation allows you to extend a path using a Bézier curve.

\pathcontrols(c)and(d)..(y or cycle) ...;

This operation extends the current path from the current point, let us call it z, via a curve to a point y (if,
instead of a coordinate you say cycle at the end, y will be the coordinate of the last move-to operation).
The curve is a cubic Bézier curve. For such a curve, apart from y, you also specify two control points ¢
and d. The idea is that the curve starts at z, “heading” in the direction of ¢. Mathematically spoken,
the tangent of the curve at x goes through c. Similarly, the curve ends at y, “coming from” the other
control point, d. The larger the distance between = and ¢ and between d and y, the larger the curve
will be.

If the “and(d)” part is not given, d is assumed to be equal to c.

156

\begin{tikzpicture}
\draw[line width=10pt] (0,0) .. comntrols (1,1) .. (4,0)
. controls (5,0) and (5,1) .. (4,1);
\draw[color=gray] (0,0) -- (1,1) -- (4,0) -- (5,0) -- (5,1) -- (4,1);
\end{tikzpicture}

\begin{tikzpicture}
\draw[line width=10pt] (0,0) -- (2,0) .. controls (1,1) .. cycle;
\end{tikzpicture}

As with the line-to operation, it makes a difference whether two curves are joined because they resulted
from consecutive curve-to or line-to operations, or whether they just happen to have a common (end)

point:
\begin{tikzpicture}[line width=10pt]

\draw (0,0) -- (1,1) (1,1) .. comntrols (1,0) and (2,0) .. (2,0);

\draw [yshift=-1.5cm]
(0,0) -- (1,1) .. controls (1,0) and (2,0) .. (2,0);

\end{tikzpicture}

14.4 The Rectangle Operation

A rectangle can obviously be created using four straight lines and a cycle operation. However, since rectangles
are needed so often, a special syntax is available for them.

\path .. rectangle(corner or cycle) ..;
When this operation is used, one corner will be the current point, another corner is given by (corner),
which becomes the new current point.

\begin{tikzpicture}

\draw (0,0) rectangle (1,1);

\draw (.5,1) rectangle (2,0.5) (3,0) rectangle (3.5,1.5) -- (2,0);
\end{tikzpicture}

Just for consistency, you can also use cycle instead of a coordinate, but it is a bit unclear what use
this might have.

14.5 Rounding Corners

All of the path construction operations mentioned up to now are influenced by the following option:

/tikz/rounded corners=(inset) (default 4pt)

When this option is in force, all corners (places where a line is continued either via line-to or a curve-to
operation) are replaced by little arcs so that the corner becomes smooth.

\tikz \draw [rounded cormers] (0,0) -- (1,1)
//////H\\\\\y/////’\\\\\\ -- (2,0) .. controls (3,1) .. (4,0);
The (inset) describes how big the corner is. Note that the (inset) is not scaled along if you use a scaling

option like scale=2.

157

N \begin{tikzpicture}
\ ‘ \draw [color=gray,very thin] (10pt,15pt) circlel[radius=10pt];
o \draw [rounded corners=10pt] (0,0) -- (Opt,25pt) -- (40pt,25pt);

\end{tikzpicture}

You can switch the rounded corners on and off “in the middle of path” and different corners in the same
path can have different corner radii:

\begin{tikzpicture}
\draw (0,0) [rounded corners=10pt] -- (1,1) -- (2,1)
[sharp corners] -- (2,0)
[rounded corners=5pt] -- cycle;
\end{tikzpicture}

Here is a rectangle with rounded corners:

(:::) \tikz \draw[rounded corners=Iez] (0,0) rectangle (20pt,2ex);

You should be aware, that there are several pitfalls when using this option. First, the rounded corner
will only be an arc (part of a circle) if the angle is 90°. In other cases, the rounded corner will still be
round, but “not as nice”.

Second, if there are very short line segments in a path, the “rounding” may cause inadvertent effects.
In such case it may be necessary to temporarily switch off the rounding using sharp corners.

/tikz/sharp corners (no value)

This options switches off any rounding on subsequent corners of the path.

14.6 The Circle and Ellipse Operations

Circles and ellipses are common path elements for which there is a special path operation.

\path .. circle[(options)] ..;

This command adds a circle to the current path where the center of the circle is the current point
by default, but you can use the at option to change this. The new current point of the path will be
(typically just remain) the center of the circle.

The radius of the circle is specified using the following options:

/tikz/x radius=(value) (no default)

Sets the horizontal radius of the circle (which, when this value is different from the vertical radius,
is actually an ellipse). The (value) may either be a dimension or a dimensionless number. In the
latter case, the number is interpreted in the xy-coordinate system (if the z-unit is set to, say, 2cm,
then x radius=3 will have the same effect as x radius=6cm).

/tikz/y radius=(value) (no default)
Works like the x radius.

/tikz/radius=(value) (no default)

Sets the x radius and y radius simultaneously.

/tikz/at=(coordinate) (no default)

If this option is explicitly set inside the (options) (or indirectly via the every circle style), the
(coordinate) is used as the center of the circle instead of the current point. Setting at to some value
in an enclosing scope has no effect.

The (options) may also contain additional options like, say, a rotate or scale, that will only have an
effect on the circle.

158

\begin{tikzpicture}

\draw (1,0) circle [radius=1.5];

\fill (1,0) circle [x radius=Icm, y radius=5mm, rotate=30]
\end{tikzpicture}

It is possible to set the radius also in some enclosing scope, in this case the options can be left out (but
see the note below on what may follow):

\begin{tikzpicture} [radius=2pt]
\draw (0,0) circle -- (1,1) circle -- ++(0,1) circle;
\end{tikzpicture}

The following style is used with every circle:

/tikz/every circle (style, no value)

You can use this key to set up, say, a default radius for every circle. The key will also be used with
the ellipse operation.

In case you feel that the names radius and x radius are too long for your taste, you can easily created
shorter aliases:

\tikzset{r/.style={radius=#1},rx/.style={x radius=#1},ry/.style={y radius=#1}}

You can then say circle [r=1cm] or circle [rx=1,ry=1.5]. The reason TikZ uses the longer names
by default is that it encourages people to write more readable code.

Note: There also exists an older syntax for circles, where the radius of the circle is given in parentheses
right after the circle command as in circle (1pt). Although this syntax is a bit more succinct, it
is harder to understand for readers of the code and the use of parentheses for something other than a
coordinate is ill-chosen.

TikZ will use the following rule to determine whether the old or the normal syntax is used: If circle
is directly followed by something that (expands to) an opening parenthesis, then the old syntax is used
and inside these following parentheses there must be a single number or dimension representing a radius.
In all other cases the new syntax is used.

\path .. ellipsel[(options)] ..;

This command has exactly the same effect as circle. The older syntax for this command is ellipse ((z
radius) and (y radius)). As for the circle command, this syntax is not as good as the standard
syntax.

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
\draw (1,1) ellipse [x radius=Icm,y radius=.5cm];

F\\\\‘- \end{tikzpicture}

14.7 The Arc Operation

The arc operation allows you to add an arc to the current path.

\path .. arc[{options)] ..;

159

The arc operation adds a part of an ellipse to the current path. The radii of the ellipse are given by
the values of x radius and y radius, which should be set in the (options). The arc will start at the
current point and will end at the end of the arc. The arc will start and end at angles computed from the
three keys start angle, end angle, and delta angle. Normally, the first two keys specify the start
and end angle. However, in case one of them is empty, it is computed from the other key plus or minus
the delta angle. In detail, if end angle is empty, it is set to the start angle plus the delta angle. If
the start angle is missing, it is set to the end angle minus the delta angle. If all three keys are set, the
delta angle is ignored.

/tikz/start angle=(degrees) (no default)
Sets the start angle.

/tikz/end angle=(degrees) (no default)
Sets the end angle.

/tikz/delta angle=(degrees) (no default)
Sets the delta angle.

APO

\begin{tikzpicture} [radius=1cm]
\draw (0,0) arc[start angle=180, end angle=90]
-- (2,.5) arc[start angle=90, delta angle=-90];
\draw (4,0) -- +(30:1cm)

arc [start angle=30, delta angle=30] -- cycle;
\draw (8,0) arc [start angle=0, end angle=270,
x radius=1cm, y radius=5mm] -- cycle;
\end{tikzpicture}
\begin{tikzpicture} [radius=1cm,delta angle=30]
\draw (-1,0) -- +(3.5,0);
o \draw (1,0) ++(210:2cm) -- +(30:4cm);
ﬁ \draw (1,0) +(0:1cm) arc [start angle=0];
\draw (1,0) +(180:1cm) arc [start angle=180];
/ \path (1,0) ++(15:.75cm) node{α};
\path (1,0) ++(15:-.75cm) node{β};
\end{tikzpicture}

There also exists a shorter syntax for the arc operation, namely arc begin directly followed by ({start
angley: (end angle) : (radius)). However, this syntax is harder to read, so the normal syntax should be
preferred in general.

14.8 The Grid Operation
You can add a grid to the current path using the grid path operation.

\path .. grid[(options)]{corner or cycle) ...;

This operations adds a grid filling a rectangle whose two corners are given by (corner) and by the
previous coordinate. (Instead of a coordinate you can also say cycle to use the position of the last
move-to as the corner coordinate, but it not very natural to do so.) Thus, the typical way in which a
grid is drawn is \draw (1,1) grid (3,3);, which yields a grid filling the rectangle whose corners are
at (1,1) and (3,3). All coordinate transformations apply to the grid.

160

\tikz[rotate=30] \draw[step=1mm] (0,0) grid (2,2);

The (options), which are local to the grid operation, can be used to influence the appearance of the
grid. The stepping of the grid is governed by the following options:

/tikz/step=(number or dimension or coordinate) (no default, initially 1cm)

Sets the stepping in both the x and y-direction. If a dimension is provided, this is used directly. If
a number is provided, this number is interpreted in the xy-coordinate system. For example, if you
provide the number 2, then the z-step is twice the z-vector and the y-step is twice the y-vector set
by the x= and y= options. Finally, if you provide a coordinate, then the x-part of this coordinate
will be used as the z-step and the y-part will be used as the y-coordinate.

_/

\begin{tikzpicture} [x=.5cm]
\draw[thick] (0,0) grid [step=1] (3,2);
\draw [red] (0,0) grid [step=.75cm] (3,2);
\end{tikzpicture}
\begin{tikzpicture}
\draw (0,0) circle [radius=1];
\draw[blue] (0,0) grid [step=(45:1)] (3,2);
\end{tikzpicture}

A complication arises when the z- and/or y-vector do not point along the axes. Because
of this, the actual rule for computing the z-step and the y-step is the following: As the
x- and y-steps we use the z- and y-components or the following two vectors: The first
vector is either ((z-grid-step-number),0) or ((z-grid-step-dimension),0pt), the second vector is
(0, (y-grid-step-number)) or (Opt, (y-grid-step-dimension)).

If the a-step or y-step is 0 or negative the corresponding lines are not drawn.

/tikz/xstep=(dimension or number) (no default, initially 1cm)

Sets the stepping in the z-direction.

\begin{tikzpicture}
\draw (0,0) grid [xstep=.5,ystep=.75] (3,2);
\draw[ultra thick] (0,0) grid [ystep=0] (3,2);
\end{tikzpicture}

/tikz/ystep=(dimension or number) (no default, initially 1cm)

Sets the stepping in the y-direction.

It is important to note that the grid is always “phased” such that it contains the point (0, 0) if that point
happens to be inside the rectangle. Thus, the grid does not always have an intersection at the corner
points; this occurs only if the corner points are multiples of the stepping. Note that due to rounding

161

errors, the “last” lines of a grid may be omitted. In this case, you have to add an epsilon to the corner
points.

The following style is useful for drawing grids:
/tikz/help lines (style, initially 1ine width=0.2pt,gray)

This style makes lines “subdued” by using thin gray lines for them. However, this style is not
installed automatically and you have to say for example:

\tikz \draw[help lines] (0,0) grid (3,3);

14.9 The Parabola Operation

The parabola path operation continues the current path with a parabola. A parabola is a (shifted and
scaled) curve defined by the equation f(z) = 22 and looks like this: \/.

\path .. parabola[{options)]lbend(bend coordinate){coordinate or cycle) ..;

This operation adds a parabola through the current point and the given (coordinate) or, if cycle is used
instead of coordinate at the end, the (coordinate) is set to the position of the last move-to and the path
gets closed after the parabola. If the bend is given, it specifies where the bend should go; the (options)
can also be used to specify where the bend is. By default, the bend is at the old current point.

\begin{tikzpicture}
\draw (0,0) rectangle (1,1.5)
(0,0) parabola (1,1.5);
\draw[xshift=1.5em] (0,0) rectangle (1,1.5)
(0,0) parabolal[bend at end] (1,1.5);
\draw [xshift=3cm] (0,0) rectangle (1,1.5)

(0,0) parabola bend (.75,1.75) (1,1.5);

\draw [yshift=-2cm] (1,1.5) --
(0,0) parabola cycle;
\end{tikzpicture}

The following options influence parabolas:

/tikz/bend=(coordinate) (no default)

Has the same effect as saying bend(coordinate) outside the (options). The option specifies that
the bend of the parabola should be at the given (coordinate). You have to take care yourself
that the bend position is a “valid” position; which means that if there is no parabola of the form
f(x) = ax?® + bz + c that goes through the old current point, the given bend, and the new current
point, the result will not be a parabola.
There is one special property of the (coordinate): When a relative coordinate is given like +(0,0),
the position relative to this coordinate is “flexible”. More precisely, this position lies somewhere on
a line from the old current point to the new current point. The exact position depends on the next
option.

/tikz/bend pos=(fraction) (no default)

Specifies where the “previous” point is relative to which the bend is calculated. The previous point
will be at the (fraction)th part of the line from the old current point to the new current point.

The idea is the following: If you say bend pos=0 and bend +(0,0), the bend will be at the old
current point. If you say bend pos=1 and bend +(0,0), the bend will be at the new current point.

162

If you say bend pos=0.5 and bend +(0,2cm) the bend will be 2cm above the middle of the line
between the start and end point. This is most useful in situations such as the following:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (-1,0) parabola[bend pos=0.5] bend +(0,2) +(3,0);
\end{tikzpicture}

In the above example, the bend +(0,2) essentially means “a parabola that is 2cm high” and +(3,0)
means “and 3cm wide”. Since this situation arises often, there is a special shortcut option:

/tikz/parabola height=(dimension) (no default)
This option has the same effect as [bend pos=0.5,bend={+(0pt, {(dimension))}].

\draw[help lines] (0,0) grid (3,2);
\draw (-1,0) parabola[parabola height=2cm] +(3,0) ;

\begin{tikzpicture}
\end{tikzpicture}

The following styles are useful shortcuts:

/tikz/bend at start (style, no value)
This places the bend at the start of a parabola. It is a shortcut for the following options:
bend pos=0,bend={+(0,0)}.

/tikz/bend at end (style, no value)
This places the bend at the end of a parabola.

14.10 The Sine and Cosine Operation

The sin and cos operations are similar to the parabola operation. They, too, can be used to draw (parts
of) a sine or cosine curve.

\path .. sin{coordinate or cycle) ..;
The effect of sin is to draw a scaled and shifted version of a sine curve in the interval [0,7/2]. The
scaling and shifting is done in such a way that the start of the sine curve in the interval is at the old
current point and that the end of the curve in the interval is at (coordinate). Here is an example that
should clarify this:

\tikz \draw (0,0) rectangle (1,1) (0,0) sin (1,1)
(2,0) rectangle +(1.57,1) (2,0) sin +(1.57,1);

\path .. cos{coordinate or cycle) ..;

This operation works similarly, only a cosine in the interval [0, 7/2] is drawn. By correctly alternating
sin and cos operations, you can create a complete sine or cosine curve:

163

\begin{tikzpicture} [xscale=1.57]

\draw (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0) sin (5,1);

\draw[color=red] (0,1.5) cos (1,0) sin (2,-1.5) cos (3,0) sin (4,1.5) cos (5,0);
\end{tikzpicture}

Note that there is no way to (conveniently) draw an interval on a sine or cosine curve whose end points
are not multiples of 7/2.

14.11 The SVG Operation

The svg operation can be used to extend the current path by a path given in the SvG path data syntax.
This syntax is described in detail in Section 8.3 of the SVG 1.1 specification, please consult this specification
for details.

\path .. svg[(options)]{(path data)} ..;
This operation adds the path specified in the (path data) in SVG 1.1 PATH DATA syntax to the current
path. Unlike the svG-specification, it is permissible that the path data does not start with a move-
to command (m or M), in which case the last point of the current path is used as start point. The
optional (options) apply locally to this path operation, typically you will use them to set up, say, some
transformations.

\usetikzlibrary {svg.path}
\begin{tikzpicture}
\filldraw [fill=red/20] (0,1) svglscale=2] {h 10 v 10 h -10}
node [above left] {upper left} -- cycle;

7
\draw svg {M 0 O L 20 20 h 10 a 10 10 0 0 O -20 O};
\end{tikzpicture}

An sva coordinate like 10 20 is always interpreted as (10pt,20pt), so the basic unit is always points
(pt). The xy-coordinate system is not used. However, you can use scaling to (locally) change the basic
unit. For instance, svgl[scale=1cm] (yes, this works, although some rather evil magic is involved) will
cause lcm to be the basic unit.

upper left

Instead of curly braces, you can also use quotation marks to indicate the start and end of the SVG path.

Warning: The arc operations (a and A) are numerically instable. This means that they will be quite
imprecise, except when the angle is a multiple of 90° (as is, fortunately, most often the case).

14.12 The Plot Operation

The plot operation can be used to append a line or curve to the path that goes through a large number of
coordinates. These coordinates are either given in a simple list of coordinates, read from some file, or they
are computed on the fly.

Since the syntax and the behavior of this command are a bit complex, they are described in the separated
Section 22.

14.13 The To Path Operation

The to operation is used to add a user-defined path from the previous coordinate to the following coordinate.
When you write (a) to (b), a straight line is added from a to b, exactly as if you had written (a) -- (b).
However, if you write (a) to [out=135,in=45] (b) a curve is added to the path, which leaves at an angle
of 135° at a and arrives at an angle of 45° at b. This is because the options in and out trigger a special
path to be used instead of the straight line.

\path .. to[(options)] (nodes) {coordinate or cycle) ...;

This path operation inserts the path currently set via the to path option at the current position. The
(options) can be used to modify (perhaps implicitly) the to path and to set up how the path will be
rendered.

Before the to path is inserted, a number of macros are set up that can “help” the to path. These are
\tikztostart, \tikztotarget, and \tikztonodes; they are explained in the following.

164

Start and Target Coordinates. The to operation is always followed by a (coordinate), called the
target coordinate, or the text cycle, in which case the last move-to is used as a coordinate and the path
gets closed. The macro \tikztotarget is set to this coordinate (without its parentheses). There is also
a start coordinate, which is the coordinate preceding the to operation. This coordinate can be accessed
via the macro \tikztostart. In the following example, for the first to, the macro \tikztostart is
Opt,Opt and the \tikztotarget is 0,2. For the second to, the macro \tikztostart is 10pt, 10pt and
\tikztotarget is a. For the third, they are set to a and current subpath start.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\node (a) at (2,2) {a};
\draw (0,0) to (0,2);
\draw[red] (10pt,10pt) to (a);
\draw[blue] (3,0) -- (3,2) -- (a) to cycle;

\end{tikzpicture}

Nodes on to—paths. It is possible to add nodes to the paths constructed by a to operation. To do
so, you specify the nodes between the to keyword and the coordinate (if there are options to the to
operation, these come first). The effect of (a) to node {x} (b) (typically) is the same as if you had
written (a) -- node {x} (b), namely that the node is placed on the to. This can be used to add
labels to tos:

\begin{tikzpicture}
> \draw (0,0) to node [sloped,above] {x} (3,2);

\draw (0,0) to[out=90,in=180] node [sloped,above] {x} (3,2);
\end{tikzpicture}

Instead of writing the node between the to keyword and the target coordinate, you may also use the
following keys to create such nodes:

/tikz/edge node=(node specification) (no default)

This key can be used inside the {options) of a to path command. It will add the (node specification)
to the list of nodes to be placed on the connecting line, just as if you had written the (node
specification) directly after the to keyword:

\begin{tikzpicture}
*+ \draw (0,0) to [edge node={node [sloped,above] {z}} (3,2);

\draw (0,0) to [out=90,in=180,

edge node={node [sloped,above] {z}}] (3,2);
\end{tikzpicture}

This key is mostly useful to create labels automatically using other keys.

/tikz/edge label=(text) (no default)
A shorthand for edge node={node[auto] {(text)}}.

\tikz \draw (0,0) to [edge label=z] (3,2);

/tikz/edge label'=(text) (no default)
A shorthand for edge node={node[auto,swap]{(text)}}.

165

\tikz \draw (0,0) to [edge label=z, edge label'=y] (3,2);

When the quotes library is loaded, additional ways of specifying nodes on to—paths become available,
see Section 17.12.2.

Styles for to-paths. In addition to the {options) given after the to operation, the following style is

also set at the beginning of the to path:

/tikz/every to (style, initially empty)
This style is installed at the beginning of every to.

\tikz[every to/.style={bend left}]
\draw (0,0) to (3,2);

Note that, as explained below, every to path is implicitly surrounded by curly braces. This means
that options like draw given in an every to do not actually influence the path. You can fix this
by using the append after command option:

_- \tikz[every to/.style={append after command={/[draw,dashed]}}]
e \draw (0,0) to (3,2);

Options. The (options) given with the to allow you to influence the appearance of the to path.
Mostly, these options are used to change the to path. This can be used to change the path from a
straight line to, say, a curve.

The path used is set using the following option:
/tikz/to path=(path) (no default)
Whenever a to operation is used, the (path) is inserted. More precisely, the following path is added:
{[every to, (options)] (path) }

The (options) are the options given to the to operation, the (path) is the path set by this option
to path.
Inside the (path), different macros are used to reference the from- and to-coordinates. In detail,
these are:

e \tikztostart will expand to the from-coordinate (without the parentheses).

o \tikztotarget will expand to the to-coordinate.

e \tikztonodes will expand to the nodes between the to operation and the coordinate. Fur-

thermore, these nodes will have the pos option set implicitly.

Let us have a look at a simple example. The standard straight line for a to is achieved by the
following (path):

-- (\tikztotarget) \tikztonodes

Indeed, this is the default setting for the path. When we write (a) to (b), the (path) will expand
to (a) -- (b), when we write

166

(a) tolred] node {x} (b)
the (path) will expand to
(a) -- (b) nodelred] {x}
It is not possible to specify the path
-- \tikztonodes (\tikztotarget)

since TikZ does not allow one to have a macro after -- that expands to a node.

Now let us have a look at how we can modify the (path) sensibly. The simplest way is to use a
curve.

c \begin{tikzpicture}[to path={
. controls +(1,0) and +(1,0) .. (\tikztotarget) \tikztonodes}]

b \node (a) at (0,0) {a};
\node (b) at (2,1) {b};
\node (c) at (1,2) {c};

a
\draw (a) to node {x} (b)
(a) to (c);
\end{tikzpicture}

Here is another example:

0 \tikzset{
my loop/.style={to path={
. controls +(80:1) and +(100:1) .. (\tikztotarget) \tikztonodes}},

@ @ my state/.style={circle,draw}}
1

\begin{tikzpicture} [shorten >=2pt]
\node [my state] (a) at (210:1) {q_a};
\node [my state] (b) at (330:1) {q_b};

\draw[->] (a) to node [below] {1} ()
to [my loop] nodel[above right] {0} (b);
\end{tikzpicture}
/tikz/execute at begin to=(code) (no default)

The (code) is executed prior to the to. This can be used to draw one or more additional paths
or to do additional computations.

/tikz/execute at end to={code) (no default)
Works like the previous option, only this code is executed after the to path has been added.

/tikz/every to (style, initially empty)
This style is installed at the beginning of every to.

There are a number of predefined to paths, see Section 74 for a reference.

14.14 The Foreach Operation

\path .. foreach(wariables) [{options)] in (list) {(path commands)} ...;

The foreach operation can be used to repeatedly insert the (path commands) into the current path.
Naturally, the (path commands) should internally reference some of the (variables) so that you do not
insert exactly the same path repeatedly, but rather variations. For historical reasons, you can also write
\foreach instead of foreach.

W \tikz \draw (0,0) foreach \x in {1,...,3} { —- (\x,1) —- (\x,0) };

See Section 88 for more details on the for-each-command.

167

14.15 The Let Operation

The let operation is the first of a number of path operations that do not actually extend that path, but have
different, mostly local, effects. It requires the calc library, see Section 13.5.

\path .. let(assignment) ,{assignment),{assignment).. in ..;
When this path operation is encountered, the (assignment)s are evaluated, one by one. This will store
coordinate and number in special registers (which are local to TikZ, they have nothing to do with TgX
registers). Subsequently, one can access the contents of these registers using the macros \p, \x, \y, and

\n.

The first kind of permissible (assignment)s have the following form:
\n{number registery={(formula)}

When an assignment has this form, the (formaula) is evaluated using the \pgfmathparse operation. The
result is stored in the (number register). If the (formula) involves a dimension anywhere (as in 2*3cm/2),
then the (number register) stores the resulting dimension with a trailing pt. A (number register) can be
named arbitrarily and is a normal TEX parameter to the \n macro. Possible names are {left corner},
but also just a single digit like 5.

Let us call the path that follows a let operation its body. Inside the body, the \n macro can be used to
access the register.

\n{(number register)}

When this macro is used on the left-hand side of an =-sign in a let operation, it has no effect and
is just there for readability. When the macro is used on the right-hand side of an =-sign or in the
body of the let operation, then it expands to the value stored in the (number register). This will
either be a dimensionless number like 2.0 or a dimension like 5. 6pt.

For instance, if we say let \ni1={1pt+2pt}, \n2={1+2} in ..., then inside the ... part the
macro \nl1 will expand to 3pt and \n2 expands to 3.

The second kind of {assignments) have the following form:
\p(point register)={coordinate)

Point position registers store a single point, consisting of an z-part and a y-part measured in TEX points
(pt). In particular, point registers do not store nodes or node names. Here is an example:

\begin{tikzpicture}

\usetikzlibrary {calc}
\draw [help lines] (0,0) grid (3,2);

(0,00 —= (\p2) -- (\p{foo});
\end{tikzpicture}

\draw let \p{foo} = (1,1), \p2 = (2,0) in

\p{(point register)}
When this macro is used on the left-hand side of an =-sign in a let operation, it has no effect and
is just there for readability. When the macro is used on the right-hand side of an =-sign or in the
body of the let operation, then it expands to the a-part (measured in TEX points) of the coordinate
stored in the (register), followed, by a comma, followed by the y-part.

For instance, if we say let \p1=(1pt,1pt+2pt) in ..., then inside the ... part the macro \p1
will expand to exactly the seven characters “1pt,3pt”. This means that you when you write (\p1),
this expands to (1pt,3pt), which is presumably exactly what you intended.

\x{(point register)}

This macro expands just to the z-part of the point register. If we say as above, as we did above,
let \pi=(1pt,1ipt+2pt) in ..., then inside the ... part the macro \x1 expands to 1pt.

\y{(point register)}
Works like \x, only for the y-part.

168

Note that the above macros are available only inside a let operation.

Here is an example where let clauses are used to assemble a coordinate from the z-coordinate of a first
point and the y-coordinate of a second point. Naturally, using the |- notation, this could be written
much more compactly.

\begin{tikzpicture}

\usetikzlibrary {calc}
\draw [help lines] (0,0) grid (3,2);

-- (3,2) coordinate (second point) ;

\draw (1,0) coordinate (first point)

\fill[red] let \pl = (first point),
\p2 = (second point) in
(\x1,\y2) circle [radius=2pt];
\end{tikzpicture}

Note that the effect of a let operation is local to the body of the let operation. If you wish to access a
computed coordinate outside the body, you must use a coordinate path operation:

\begin{tikzpicture}

\usetikzlibrary {calc}
\draw [help lines] (0,0) grid (3,2);

\path / let's define some points:

let
\p1 = (1,0),
\p2 = (3,2),
\p{center} = ($ (\p1) !'.5! (\p2) $) / center

in
coordinate (p1) at (\p1)
coordinate (p2) at (\p2)
coordinate (center) at (\p{center});

\draw (p1) -- (p2);
\fill[red] (center) circle [radius=2pt];
\end{tikzpicture}

For a more useful application of the let operation, let us draw a circle that touches a given line:
\usetikzlibrary {calc}
\begin{tikzpicture}

////-‘\\\\ \draw [help lines] (0,0) grid (3,3);
\\\\~, \coordinate (a) at (rnd,rnd);
\coordinate (b) at (3-rnd,3-rnd);

\draw (a) -- (b);

\node (c) at (1,2) {x};

\draw let \pl = ($ (@)!(c)!(b) - (c) $),
\n1 = {veclen(\x1,\y1)}
in circle [at=(c), radius=\ni1l;
\end{tikzpicture}

14.16 The Scoping Operation

When TikZ encounters and opening or a closing brace ({ or }) at some point where a path operation should
come, it will open or close a scope. All options that can be applied “locally” will be scoped inside the
scope. For example, if you apply a transformation like [xshift=1cm] inside the scoped area, the shifting
only applies to the scope. On the other hand, an option like color=red does not have any effect inside a
scope since it can only be applied to the path as a whole.

Concerning the effect of scopes on relative coordinates, please see Section 13.4.3.

14.17 The Node and Edge Operations

The node operation adds a so-called node to a path. This operation is special in the following sense: It does
not change the current path in any way. In other words, this operation is not really a path operation, but

169

has an effect that is “external” to the path. The edge operation has similar effect in that it adds something
after the main path has been drawn. However, it works like the to operation, that is, it adds a to path to
the picture after the main path has been drawn.

Since these operations are quite complex, they are described in the separate Section 17.

14.18 The Graph Operation

The graph operation can be used to specify easily how a large number of nodes are connected. This operation
is documented in a separate section, see Section 19.

14.19 The Pic Operation

The pic operation is used to insert a “short picture” (hence the “short” name) at the current position of
the path. This operation is somewhat similar to the node operation and discussed in detail in Section 18.

14.20 The Attribute Animation Operation

\path .. :(animation attribute)={(options)} ..;

This path operation has the same effect as if you had said:
[animate = { myself:(animate attribute)={{options)}} 1]

This causes an animation of (animate attribute) to be added to the current path, see Section 26 for
details.

\usetikzlibrary {animations}
\tikz \draw :xshift = {0s = "Ocm", 30s = "-3cm", repeats} (0,0) circle (5mm);

14.21 The PGF-Extra Operation

In some cases you may need to “do some calculations or some other stuff” while a path is constructed. For
this, you would like to suspend the construction of the path and suspend TikZ’s parsing of the path, you
would then like to have some TEX code executed, and would then like to resume the parsing of the path.
This effect can be achieved using the following path operation \pgfextra. Note that this operation should
only be used by real experts and should only be used deep inside clever macros, not on normal paths.

\pgfextra{{code)}

This command may only be used inside a TikZ path. There it is used like a normal path operation.
The construction of the path is temporarily suspended and the (code) is executed. Then, the path
construction is resumed.

\newdimen\mydim
\begin{tikzpicture}

\mydim=1cm

\draw (Opt,\mydim) \pgfextra{\mydim=2cm} -- (Opt,\mydim) ;
\end{tikzpicture}

\pgfextra(code) \endpgfextra

This is an alternative syntax for the \pgfextra command. If the code following \pgfextra does not
start with a brace, the {code) is executed until \endpgfextra is encountered. What actually happens
is that when \pgfextra is not followed by a brace, this completely shuts down the TikZ parser and
\endpgfextra is a normal macro that restarts the parser.

\newdimen\mydim
\begin{tikzpicture}
\mydim=1cm
\draw (Opt,\mydim)
\pgfextra \mydim=2cm \endpgfextra -- (Opt,\mydim);
\end{tikzpicture}

170

14.22 Interacting with the Soft Path subsystem

During construction TikZ stores the path internally as a soft path. Sometimes it is desirable to save a path
during the stage of construction, restore it elsewhere and continue using it. There are two keys to facilitate
this operation, which are explained below. To learn more about the soft path subsystem, refer to section 121.

/tikz/save path=(macro) (no default)

Save the current soft path into (macro).

/tikz/use path=(macro) (no default)
Set the current path to the soft path stored in (macro).

\usetikzlibrary {intersections}
\begin{tikzpicture}
\path[save path=\path4,name path=4] (0,1) to [bend left] (1,0);

\path[save path=\pathB,name path=B]
(0,0) .. controls (.33,.1) and (.66,.9) .. (1,1);

\fill[name intersections={of=4 and B}] (intersection-1) circle (1pt);
\draw[blue] [use path=\pathd];

\draw[red] [use path=\pathB];
\end{tikzpicture}

171

15 Actions on Paths

15.1 Overview

Once a path has been constructed, different things can be done with it. It can be drawn (or stroked) with
a “pen”, it can be filled with a color or shading, it can be used for clipping subsequent drawing, it can be
used to specify the extend of the picture — or any combination of these actions at the same time.

To decide what is to be done with a path, two methods can be used. First, you can use a special-purpose
command like \draw to indicate that the path should be drawn. However, commands like \draw and \fill
are just abbreviations for special cases of the more general method: Here, the \path command is used to
specify the path. Then, options encountered on the path indicate what should be done with the path.

For example, \path (0,0) circle (lcm); means: “This is a path consisting of a circle around the
origin. Do not do anything with it (throw it away).” However, if the option draw is encountered anywhere
on the path, the circle will be drawn. “Anywhere” is any point on the path where an option can be given,
which is everywhere where a path command like circle (1cm) or rectangle (1,1) or even just (0,0)
would also be allowed. Thus, the following commands all draw the same circle:

\path [draw] (0,0) circle (icm);
\path (0,0) [draw] circle (icm);
\path (0,0) circle (icm) [draw];

Finally, \draw (0,0) circle (lcm); also draws a path, because \draw is an abbreviation for
\path [draw] and thus the command expands to the first line of the above example.

Similarly, \fill is an abbreviation for \path[£i11] and \filldraw is an abbreviation for the command
\path[fill,draw]. Since options accumulate, the following commands all have the same effect:

\path [draw,fill] (0,0) circle (icm);
\path [draw] [£fill] (0,0) circle (lcm);
\path [£fill] (0,0) circle (icm) [draw];
\draw [fill] (0,0) circle (icm);

\fill (0,0) [draw] circle (icm);
\filldraw (0,0) circle (icm);

In the following subsection the different actions that can be performed on a path are explained. The
following commands are abbreviations for certain sets of actions, but for many useful combinations there are
no abbreviations:

\draw
Inside {tikzpicture} this is an abbreviation for \path[draw].

\fill
Inside {tikzpicture} this is an abbreviation for \path[£fill].

\filldraw
Inside {tikzpicture} this is an abbreviation for \path[fill,draw].

\pattern
Inside {tikzpicture} this is an abbreviation for \path[pattern].

\shade
Inside {tikzpicture} this is an abbreviation for \path[shade].

\shadedraw
Inside {tikzpicture} this is an abbreviation for \path[shade,draw].

\clip
Inside {tikzpicture} this is an abbreviation for \path[clip].

\useasboundingbox

Inside {tikzpicture} this is an abbreviation for \path[use as bounding box].

172

15.2 Specifying a Color
The most unspecific option for setting colors is the following:

/tikz/color=(color name) (no default)

This option sets the color that is used for fill, drawing, and text inside the current scope. Any special
settings for filling colors or drawing colors are immediately “overruled” by this option.

The (color name) is the name of a previously defined color. For IWTEX users, this is just a normal
“IATEX-color” and the xcolor extensions are allowed. Here is an example:

\tikz \fill[color=7red!/20] (0,0) circle (lex);

It is possible to “leave out” the color= part and you can also write:

\tikz \fill[red!20] (0,0) circle (lex);

What happens is that every option that TikZ does not know, like red!20, gets a “second chance” as a
color name.

For plain TEX users, it is not so easy to specify colors since plain TEX has no “standardized” color naming
mechanism. Because of this, PGF emulates the xcolor package, though the emulation is extremely basic
(more precisely, what I could hack together in two hours or so). The emulation allows you to do the
following:

« Specify a new color using \definecolor. Only the color models gray, rgb, and RGB are supported®.
Example: \definecolor{orange}{rgb}{1,0.5,0}

e Use \colorlet to define a new color based on an old one. Here, the ! mechanism is supported,
though only “once” (use multiple \colorlet for more fancy colors).
Ezxample: \colorlet{lightgray}{black!25}

o Use \color{{color name)} to set the color in the current TEX group. \aftergroup-hackery is used
to restore the color after the group.

As pointed out above, the color= option applies to “everything” (except to shadings), which is not always
what you want. Because of this, there are several more specialized color options. For example, the draw=
option sets the color used for drawing, but does not modify the color used for filling. These color options
are documented where the path action they influence is described.

15.3 Drawing a Path
You can draw a path using the following option:

/tikz/draw=(color) (default is scope’s color setting)

Causes the path to be drawn. “Drawing” (also known as “stroking”) can be thought of as picking up a
pen and moving it along the path, thereby leaving “ink” on the canvas.

There are numerous parameters that influence how a line is drawn, like the thickness or the dash pattern.
These options are explained below.

If the optional {color) argument is given, drawing is done using the given (color). This color can be
different from the current filling color, which allows you to draw and fill a path with different colors. If
no (color) argument is given, the last usage of the color= option is used.

If the special color name none is given, this option causes drawing to be “switched off”. This is useful
if a style has previously switched on drawing and you locally wish to undo this effect.

Although this option is normally used on paths to indicate that the path should be drawn, it also
makes sense to use the option with a {scope} or {tikzpicture} environment. However, this will not
cause all paths to be drawn. Instead, this just sets the (color) to be used for drawing paths inside the
environment.

3ConTEXt users should be aware that \definecolor has a different meaning in ConTEXt. There is a low-level equivalent
named \pgfutil@definecolor which can be used instead.

173

\begin{tikzpicture}
\path[draw=red] (0,0) -- (1,1) -- (2,1) circle (10pt);
\end{tikzpicture}

The following subsections list the different options that influence how a path is drawn. All of these
options only have an effect if the draw option is given (directly or indirectly).

15.3.1 Graphic Parameters: Line Width, Line Cap, and Line Join

/tikz/line width=(dimension)

(no default, initially 0.4pt)

Specifies the line width. Note the space.

’ \tikz

\draw[line width=5pt] (0,0) -- (lcm,1.5ex);

There are a number of predefined styles that provide more “natural” ways of setting the line width. You

can also redefine these styles.

/tikz/ultra thin
Sets the line width to 0.1pt.

_— \tikz

/tikz/very thin
Sets the line width to 0.2pt.

_— \tikz

/tikz/thin
Sets the line width to 0.4pt.

_— \tikz

/tikz/semithick
Sets the line width to 0.6pt.

_— \tikz

/tikz/thick
Sets the line width to 0.8pt.

/ \tikz

/tikz/very thick
Sets the line width to 1.2pt.

_— \tikz

(style,
\draw[ultra thin] (0,0) -- (lcm,1.5ex);

(style,
\draw[very thin] (0,0) -- (icm,1.5ex);

(style,
\draw[thin] (0,0) -- (icm,1.5ex);

(style,
\draw[semithick] (0,0) -- (lcm,1.5ex);

(style,
\draw[thick] (0,0) -- (lcm,1.5ex);

(style,

\draw[very thick] (0,0) -- (lcm,1.5ex);

174

no value)

no value)

no value)

no value)

no value)

no value)

/tikz/ultra thick

(style, no value)
Sets the line width to 1.6pt.

— \tikz \draw([ultra thick] (0,0) -- (1cm,1.5ex);

/tikz/line cap=(type) (no default, initially butt)

Specifies how lines “end”. Permissible (type) are round, rect, and butt. They have the following
effects:

= \begin{tikzpicture}

\begin{scope}[line width=10pt]

—— \draw[line cap=round] (0,1) -- +(1,0);
= \draw[line cap=butt] (0,.5) -- +(1,0);
\draw[line cap=rect] (0,0) -- +(1,0);

\end{scope}

\draw[white,line width=1pt]

(0,0) -- +(1,0) (0,.5) -- +(1,0) (0,1) -- +(1,0);
\end{tikzpicture}

/tikz/line join=(type) (no default, initially miter)

Specifies how lines “join”. Permissible (type) are round, bevel, and miter. They have the following
effects:

\begin{tikzpicture}[line width=10pt]
\draw[line join=round] (0,0) -- ++(.5,1) —— ++(.5,-1);
\draw[line join=bewvel] (1.25,0) -- ++(.5,1) -- ++(.5,-1);
\draw[line join=miter] (2.5,0) -- ++(.5,1) -- ++(.5,-1);
\useasboundingbox (0,1.5); 7/ enlarge bounding boz
\end{tikzpicture}

/tikz/miter limit=(factor) (no default, initially 10)

When you use the miter join and there is a very sharp corner (a small angle), the miter join may
protrude very far over the actual joining point. In this case, if it were to protrude by more than
(factor) times the line width, the miter join is replaced by a bevel join.

\begin{tikzpicture}[line width=5pt]
\draw (0,0) -- ++(5,.5) -- ++(-5,.5);
\draw[miter limit=25] (6,0) -= ++(5,.5) -= ++(-5,.5);
\useasboundingbox (14,0); 7 make bounding boz bigger
\end{tikzpicture}

15.3.2 Graphic Parameters: Dash Pattern
/tikz/dash pattern=(dash paltern) (no default)
Sets the dashing pattern. The syntax is the same as in METAFONT. For example following pattern

on 2pt off 3pt on 4pt off 4pt means “draw 2pt, then leave out 3pt, then draw 4pt once more,
then leave out 4pt again, repeat”.

\begin{tikzpicture}[dash pattern=on 2pt off 3pt on 4pt off 4pt]
\draw (Opt,Opt) -- (3.5cm,Opt);
\end{tikzpicture}

175

/tikz/dash phase=(dash phase) (no default, initially Opt)
Shifts the start of the dash pattern by (phase).

\begin{tikzpicture}[dash pattern=on 20pt off 10pt]
\draw[dash phase=0pt] (Opt,3pt) -- (3.5cm,3pt);
\draw[dash phase=10pt] (Opt,Opt) -- (3.5cm,0pt);

\end{tikzpicture}

/tikz/dash={dash pattern)phase(dash phase) (no default)

Sets the dashing pattern and phase at the same time.

/tikz/dash expand off

\begin{tikzpicture}
\draw [dash=on 20pt off 10pt phase Opt] (Opt,3pt) -- (3.5cm,3pt);
\draw [dash=on 20pt off 10pt phase 10pt] (Opt,Opt) -- (3.5cm,Opt);
\end{tikzpicture}

(no value)

Makes the off part of a dash pattern expandable such that it can stretch. This only works when there
is a single on and a single off field and requires the decorations library. Right now this option has to
be specified on the path where it is supposed to take effect after the dash pattern option because the
dash pattern has to be known at the point where it is applied.

\usetikzlibrary {decorations}

\begin{tikzpicture}[|-|, dash pattern=on 4pt off 2pt]
\draw [dash expand off] (Opt,30pt) -- (26pt,30pt);
\draw [dash expand off] (Opt,20pt) -- (24pt,20pt);
\draw [dash expand off] (Opt,10pt) -- (22pt,10pt);
\draw [dash expand off] (Opt, Opt) -- (20pt, Opt);

\end{tikzpicture}

As for the line thickness, some predefined styles allow you to set the dashing conveniently.

/tikz/solid

(style, no value)

Shorthand for setting a solid line as “dash pattern” This is the default.

/tikz/dotted

\tikz \draw[solid] (Opt,Opt) -- (50pt,Opt);

(style, no value)

Shorthand for setting a dotted dash pattern.

/tikz/densely dotted

\tikz \draw[dotted] (Opt,Opt) -- (50pt,Opt);

(style, no value)

Shorthand for setting a densely dotted dash pattern.

/tikz/loosely dotted

\tikz \draw[densely dotted] (Opt,Opt) -- (50pt,Opt);

(style, no value)

Shorthand for setting a loosely dotted dash pattern.

/tikz/dashed

\tikz \draw[loosely dotted] (Opt,Opt) -- (50pt,Opt);

(style, no value)

Shorthand for setting a dashed dash pattern.

\tikz \draw[dashed] (Opt,Opt) -- (50pt,Opt);

176

/tikz/densely dashed (style, no value)
Shorthand for setting a densely dashed dash pattern.

\tikz \draw[densely dashed] (Opt,Opt) -- (50pt,Opt);

/tikz/loosely dashed (style, no value)
Shorthand for setting a loosely dashed dash pattern.

\tikz \draw[loosely dashed] (Opt,Opt) -- (50pt,Opt);

/tikz/dash dot (style, no value)
Shorthand for setting a dashed and dotted dash pattern.

\tikz \draw[dash dot] (Opt,Opt) -- (50pt,Opt);

/tikz/densely dash dot (style, no value)
Shorthand for setting a densely dashed and dotted dash pattern.

\tikz \draw[densely dash dot] (Opt,Opt) -- (50pt,Opt);

/tikz/loosely dash dot (style, no value)
Shorthand for setting a loosely dashed and dotted dash pattern.

\tikz \draw[loosely dash dot] (Opt,Opt) -- (50pt,Opt);

/tikz/dash dot dot (style, no value)
Shorthand for setting a dashed and dotted dash pattern with more dots.

\tikz \draw[dash dot dot] (Opt,Opt) -- (50pt,Opt);

/tikz/densely dash dot dot (style, no value)
Shorthand for setting a densely dashed and dotted dash pattern with more dots.

\tikz \draw[densely dash dot dot] (Opt,Opt) -- (50pt,Opt);

/tikz/loosely dash dot dot (style, no value)
Shorthand for setting a loosely dashed and dotted dash pattern with more dots.

\tikz \draw[loosely dash dot dot] (Opt,Opt) -- (50pt,Opt);

15.3.3 Graphic Parameters: Draw Opacity

When a line is drawn, it will normally “obscure” everything behind it as if you had used perfectly opaque
ink. It is also possible to ask TikZ to use an ink that is a little bit (or a big bit) transparent using the
draw opacity option. This is explained in Section 23 on transparency in more detail.

177

15.3.4 Graphic Parameters: Double Lines and Bordered Lines

/tikz/double=(core color) (default white)

This option causes “two” lines to be drawn instead of a single one. However, this is not what really
happens. In reality, the path is drawn twice. First, with the normal drawing color, secondly with the
(core color), which is normally white. Upon the second drawing, the line width is reduced. The net
effect is that it appears as if two lines had been drawn and this works well even with complicated, curved

paths:
\tikz \draw[double]
plot[smooth cycle] coordinates{(0,0) (1,1) (1,0) (0,1)};

You can also use the doubling option to create an effect in which a line seems to have a certain “bor-

der”:
\begin{tikzpicture}
/ \draw (0,0) -- (1,1);
/// \draw [draw=white,double=red,very thick] (0,1) -- (1,0);
\end{tikzpicture}
/tikz/double distance=(dimension) (no default, initially 0.6pt)

Sets the distance the “two” lines are spaced apart. In reality, this is the thickness of the line that is
used to draw the path for the second time. The thickness of the first time the path is drawn is twice
the normal line width plus the given (dimension). As a side-effect, this option “selects” the double

option.
\begin{tikzpicture}
\draw[very thick,double] (0,0) arc (180:90:1cm);
\draw[very thick,double distance=2pt] (1,0) arc (180:90:1cm);
\draw[thin,double distance=2pt] (2,0) arc (180:90:1cm);
\end{tikzpicture}
/tikz/double distance between line centers=(dimension) (no default)

This option works like double distance, only the distance is not the distance between (inner) borders
of the two main lines, but between their centers. Thus, the thickness the first time the path is drawn is
the normal line width plus the given (dimension), while the line width of the second line that is drawn is
(dimension) minus the normal line width. As a side-effect, this option “selects” the double option.

jm—f e —] \begin{tikzpicture}[double distance between line centers=3pt]
\foreach \1lw in {0.5,1,1.5,2,2.5}
\draw[line width=\lw pt,double] (\1lw,0) -- ++(4mm,0);
\end{tikzpicture}

o) [f— \begin{tikzpicture} [double distance=3pt]
\foreach \1lw in {0.5,1,1.5,2,2.5}
\draw[line width=\lw pt,double] (\lw,0) -- ++(4mm,0);

\end{tikzpicture}

/tikz/double equal sign distance (style, no value)
This style selects a double line distance such that it corresponds to the distance of the two lines in an
equal sign.

PR g) \> \usepackage {amsmath} \usetikzlibrary {arrows.metal}
7 4 \Huge $=\implies$\tikz[baseline,double equal sign distance]

\draw [double,thick,-{Implies[]}] (0,0.55ex) --++(3ex,0);

= = — \usepackage {amsmath} \usetikzlibrary {arrows.meta}
\normalsize $=\implies$\tikz[baseline,double equal sign distance]
\draw[double,-{Implies[]1}](0,0.6ex) --++(3ex,0);

178

=50 = \usepackage {amsmath} \usetikzlibrary {arrows.meta}

\tiny $=\implies$\tikz[baseline,double equal sign distance]
\draw [double,very thin,-{Implies[]}](0,0.5ex) -- ++(3ex,0);

15.4 Adding Arrow Tips to a Path

In different situations, TikZ will add arrow tips to the end of a path. For this to happen, a number of
different things need to be specified:

1. You must have used the arrows key, explained in detail in Section 16, to setup which kinds of arrow
tips you would like.

2. The path may not be closed (like a circle or a rectangle) and, if it consists of several subpaths, further
restrictions apply as explained in Section 16.

3. The tips key must be set to an appropriate value, see Section 16 once more.

For the current section on paths, it is only important that when you add the tips option to a path that
is not drawn, arrow tips will still be added at the beginning and at the end of the current path. This is true
even when “only” arrow tips get drawn for a path without drawing the path itself. Here is an example:

[A \usetikzlibrary {arrows.meta,bending}
\tikz \path[tips, -{Latex[open,length=10pt,bend]}] (0,0) to[bend left] (1,0);

—I \usetikzlibrary {arrows.meta,bending}
\tikz \draw[tips, -{Latex[open,length=10pt,bend]}] (0,0) to[bend left] (1,0);

15.5 Filling a Path
To fill a path, use the following option:

/tikz/£i11=(color) (default is scope’s color setting)

This option causes the path to be filled. All unclosed parts of the path are first closed, if necessary.
Then, the area enclosed by the path is filled with the current filling color, which is either the last color
set using the general color= option or the optional color (color). For self-intersection paths and for
paths consisting of several closed areas, the “enclosed area” is somewhat complicated to define and
two different definitions exist, namely the nonzero winding number rule and the even odd rule, see the
explanation of these options, below.

Just as for the draw option, setting (color) to none disables filling locally.

Y e |

\begin{tikzpicture}
\fill (0,0) -- (1,1) -- (2,1);
\fill (4,0) circle (.5cm) (4.5,0) circle (.5cm);
\fill[even odd rule] (6,0) circle (.5cm) (6.5,0) circle (.5cm);
\fill (8,0) -- (9,1) -- (10,0) circle (.5cm);
\end{tikzpicture}

If the £i11 option is used together with the draw option (either because both are given as options or
because a \filldraw command is used), the path is filled first, then the path is drawn second. This
is especially useful if different colors are selected for drawing and for filling. Even if the same color is
used, there is a difference between this command and a plain £i11: A “filldrawn” area will be slightly
larger than a filled area because of the thickness of the “pen”.

T o® o

179

\begin{tikzpicture}[fill=yellow!80!black,line width=5pt]
\filldraw (0,0) -- (1,1) -- (2,1);
\filldraw (4,0) circle (.5cm) (4.5,0) circle (.5cm);
\filldraw[even odd rule]l (6,0) circle (.5cm) (6.5,0) circle (.5cm);
\filldraw (8,0) -- (9,1) -- (10,0) circle (.5cm);
\end{tikzpicture}

15.5.1 Graphic Parameters: Fill Pattern

Instead of filling a path with a single solid color, it is also possible to fill it with a tiling pattern. Imagine a
small tile that contains a simple picture like a star. Then these tiles are (conceptually) repeated infinitely
in all directions, but clipped against the path.

Tiling patterns come in two variants: inherently colored patterns and form-only patterns. An inherently
colored pattern is, say, a red star with a black border and will always look like this. A form-only pattern
may have a different color each time it is used, only the form of the pattern will stay the same. As such,
form-only patterns do not have any colors of their own, but when it is used the current pattern color is used
as its color.

Patterns are not overly flexible. In particular, it is not possible to change the size or orientation of a
pattern without declaring a new pattern. For complicated cases, it may be easier to use two nested \foreach
statements to simulate a pattern, but patterns are rendered much more quickly than simulated ones.

/tikz/pattern=(name) (default is scope’s pattern)

This option causes the path to be filled with a pattern. If the (name) is given, this pattern is used,
otherwise the pattern set in the enclosing scope is used. As for the draw and fill options, setting
(name) to none disables filling locally.

The pattern works like a fill color. In particular, setting a new fill color will fill the path with a solid
color once more.

Strangely, no (name)s are permissible by default. You need to load for instance the patterns library,
see Section 62, to install predefined patterns.

\usetikzlibrary {patterns}
\begin{tikzpicture}

\draw [pattern=dots] (0,0) circle (icm);

\draw [pattern=fivepointed stars] (0,0) rectangle (3,1);
\end{tikzpicture}

/tikz/pattern color={color) (no default)

This option is used to set the color to be used for form-only patterns. This option has no effect on
inherently colored patterns.

A A% k & k & % k % 1 \usetikzlibrary {patterns}
k * % * k * % % * 3 \begin{tikzpicture}

* kK ok kR Kk ok Kk ok ok Kk \draw [pattern color=red,pattern=fivepointed stars] (0,0) circle (icm);
* \draw[pattern color=blue,pattern=fivepointed stars] (0,0) rectangle (3,1);
\end{tikzpicture}

* k Kk

\usetikzlibrary {patterns}

\begin{tikzpicture}
\def\mypath{(0,0) -- +(0,1) arc (180:0:1.5cm) -- +(0,-1)}
\fill [red] \mypath;
\pattern[pattern color=white,pattern=bricks] \mypath;
\end{tikzpicture}

180

15.5.2 Graphic Parameters: Interior Rules
The following two options can be used to decide how interior points should be determined:

/tikz/nonzero rule (no value)

If this rule is used (which is the default), the following method is used to determine whether a given
point is “inside” the path: From the point, shoot a ray in some direction towards infinity (the direction
is chosen such that no strange borderline cases occur). Then the ray may hit the path. Whenever it
hits the path, we increase or decrease a counter, which is initially zero. If the ray hits the path as the
path goes “from left to right” (relative to the ray), the counter is increased, otherwise it is decreased.
Then, at the end, we check whether the counter is nonzero (hence the name). If so, the point is deemed
to lie “inside”, otherwise it is “outside”. Sounds complicated? It is.

\begin{tikzpicture}
\filldraw[fill=yellow!80!black]
T % Clockwise rectangle

Eﬂ:} (0,0) -- (0,1) -- (1,1) -- (1,0) -- cycle

crossings: —1+1=0

% Counter-clockwise rectangle
(0.25,0.25) -- (0.75,0.25) -- (0.75,0.75) -- (0.25,0.75) -- cycle;

\draw[->] (0,1) -- (.4,1);
\draw[->] (0.75,0.75) -- (0.3,.75);

crossings: 1 +1 =2

I

\begin{scopel} [yshift=-3cm]

\draw[->] (0.5,0.5) -- +(0,1) nodel[above] {crossings: $-1+1 = 0$};

\filldraw[fill=yellow!80!black]

% Clockwise rectangle

(0,0) -- (0,1) -- (1,1) -- (1,0) -- cycle

% Clockwise rectangle

(0.25,0.25) -- (0.25,0.75) -- (0.75,0.75) -- (0.75,0.25) -- cycle;

\draw[->] (0,1) -- (.4,1);
\draw[->] (0.25,0.75) -- (0.4,.75);

\draw[->] (0.5,0.5) -- +(0,1) nodel[above] {crossings: $1+1 = 2$};
\end{scope}
\end{tikzpicture}

/tikz/even odd rule (no value)

This option causes a different method to be used for determining the inside and outside of paths. While
it is less flexible, it turns out to be more intuitive.

With this method, we also shoot rays from the point for which we wish to determine whether it is inside
or outside the filling area. However, this time we only count how often we “hit” the path and declare
the point to be “inside” if the number of hits is odd.

Using the even-odd rule, it is easy to “drill holes” into a path.

. . . \begin{tikzpicture}
CIRGEI S l+1=2 \filldraw[fill=yellow!80!black,even odd rulel
T (0,0) rectangle (1,1) (0.5,0.5) circle (0.4cm);
\draw[->] (0.5,0.5) -- +(0,1) [abovel node{crossings: $1+1 = 2$};
<:T:> \end{tikzpicture}

15.5.3 Graphic Parameters: Fill Opacity

Analogously to the draw opacity, you can also set the fill opacity. Please see Section 23 for more details.

15.6 Generalized Filling: Using Arbitrary Pictures to Fill a Path

Sometimes you wish to “fill” a path with something even more complicated than a pattern, let alone a single
color. For instance, you might wish to use an image to fill the path or some other, complicated drawing. In
principle, this effect can be achieved by first using the path for clipping and then, subsequently, drawing the
desired image or picture. However, there is an option that makes this process much easier:

181

/tikz/path picture=(code) (no default)

When this option is given on a path and when the (code) is not empty, the following happens: After
all other “filling” operations are done with the path, which are caused by the options £ill, pattern
and shade, a local scope is opened and the path is temporarily installed as a clipping path. Then, the
(code) is executed, which can now draw something. Then, the local scope ends and, possibly, the path
is stroked, provided the draw option has been given.

As with other keys like £111 or draw this option needs to be given on a path, setting the path picture
outside a path has no effect (the path picture is cleared at the beginning of each path).

The (code) can be any normal TikZ code like \draw ... or \node As always, when you include
an external graphic, you need to put it inside a \node.

Note that no special actions are taken to transform the origin in any way. This means that the coordinate
(0,0) is still where is was when the path was being constructed and not — as one might expect — at the
lower left corner of the path. However, you can use the following special node to access the size of the
path:

Predefined node path picture bounding box

This node is of shape rectangle. Its size and position are those of current path bounding box
just before the (code) of the path picture started to be executed. The (code) can construct its own
paths, so accessing the current path bounding box inside the (code) yields the bounding box of
any path that is currently being constructed inside the (code).

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
. \filldraw [fill=blue!10,draw=blue,thick] (1.5,1) circle (1)
sis along t [path picture={
\node at (path picture bounding boz.center) {
This is a long text.

}}
1;
\end{tikzpicture}

\begin{tikzpicture} [cross/.style={path picture={
\draw/[black]
(path picture bounding boz.south east) --
(path picture bounding box.north west)
(path picture bounding box.south west) —-—
(path picture bounding box.north east);

}H
\draw [help lines] (0,0) grid (3,2);
\filldraw [cross,fill=blue!10,draw=blue,thick] (1,1) circle (1);
\path [cross,top color=red,draw=red,thick] (2,0) -- (3,2) -- (3,0);
\end{tikzpicture}

\begin{tikzpicture}[path image/.style={
path picture={
\node at (path picture bounding boz.center) {
\includegraphics[height=3cm] {#1}
F;}H
\draw [help lines] (0,0) grid (3,2);

\draw [path image=brave-gnu-world-logo,draw=blue,thick]
(0,1) circle (1);
\draw [path image=brave-gnu-world-logo,draw=red,very thick,->]

(1,0) parabolal[parabola height=2cm] (3,0);

\end{tikzpicture}

182

15.7 Shading a Path
You can shade a path using the shade option. A shading is like a filling, only the shading changes its color

smoothly from one color to another.
/tikz/shade (no value)

Causes the path to be shaded using the currently selected shading (more on this later). If this option
is used together with the draw option, then the path is first shaded, then drawn.

It is not an error to use this option together with the £i11 option, but it makes no sense.

@ \tikz \shade (0,0) circle (lex);

@ \tikz \shadedraw (0,0) circle (lex);

For some shadings it is not really clear how they can “fill” the path. For example, the ball shading
normally looks like this: @. How is this supposed to shade a rectangle? Or a triangle?

To solve this problem, the predefined shadings like ball or axis fill a large rectangle completely in a
sensible way. Then, when the shading is used to “shade” a path, what actually happens is that the path
is temporarily used for clipping and then the rectangular shading is drawn, scaled and shifted such that all
parts of the path are filled.

The default shading is a smooth transition from gray to white and from top to bottom. However, other
shadings are also possible, for example a shading that will sweep a color from the center to the corners
outward. To choose the shading, you can use the shading= option, which will also automatically invoke the
shade option. Note that this does not change the shading color, only the way the colors sweep. For changing
the colors, other options are needed, which are explained below.

/tikz/shading=(name) (no default)

This selects a shading named (name). The following shadings are predefined: axis, radial, and
ball.

\tikz \shadedraw [shading=azis] (0,0) rectangle (1,1);
\tikz \shadedraw [shading=7adial] (0,0) rectangle (1,1);
\tikz \shadedraw [shading=ball]l (0,0) circle (.5cm);

The shadings as well as additional shadings are described in more detail in Section 69.

To change the color of a shading, special options are needed like 1left color, which sets the color of
an axis shading from left to right. These options implicitly also select the correct shading type, see the
following example

\tikz \shadedraw [left color=red,right color=blue]
(0,0) rectangle (1,1);

For a complete list of the possible options see Section 69 once more.

/tikz/shading angle=(degrees) (no default, initially 0)

This option rotates the shading (not the path!) by the given angle. For example, we can turn a
top-to-bottom axis shading into a left-to-right shading by rotating it by 90°.

I \tikz \shadedraw [shading=azis,shading angle=90] (0,0) rectangle (1,1);

You can also define new shading types yourself. However, for this, you need to use the basic layer directly,
which is, well, more basic and harder to use. Details on how to create a shading appropriate for filling paths
are given in Section 114.3.

183

15.8 Establishing a Bounding Box

PGF is reasonably good at keeping track of the size of your picture and reserving just the right amount of space
for it in the main document. However, in some cases you may want to say things like “do not count this for the
picture size” or “the picture is actually a little large”. For this you can use the option use as bounding box
or the command \useasboundingbox, which is just a shorthand for \path[use as bounding box].

/tikz/use as bounding box (no value)

Normally, when this option is given on a path, the bounding box of the present path is used to determine
the size of the picture and the size of all subsequent paths are ignored. However, if there were previous
path operations that have already established a larger bounding box, it will not be made smaller by
this operation (consider the \pgfresetboundingbox command to reset the previous bounding box).

In a sense, use as bounding box has the same effect as clipping all subsequent drawing against the
current path — without actually doing the clipping, only making PGF treat everything as if it were
clipped.

The first application of this option is to have a {tikzpicture} overlap with the main text:

/
. / . .
Left of pieturel right of picture.

Left of picture\begin{tikzpicture}
\draw[use as bounding box] (2,0) rectangle (3,1);
\draw (1,0) -- (4,.75);

\end{tikzpicture}lright of picture.

In a second application this option can be used to get better control over the white space around the
picture:

Left of picture . right of picture.

Left of picture
\begin{tikzpicture}
\useasboundingbox (0,0) rectangle (3,1);
\fill (.75,.25) circle (.5cm);
\end{tikzpicture}
right of picture.

Note: If this option is used on a path inside a TEX group (scope), the effect “lasts” only until the end
of the scope. Again, this behavior is the same as for clipping.

Consider using \useasboundingbox together with \pgfresetboundingbox in order to replace the
bounding box with a new one.

There is a node that allows you to get the size of the current bounding box. The current bounding box
node has the rectangle shape and its size is always the size of the current bounding box.

Similarly, the current path bounding box node has the rectangle shape and the size of the bounding
box of the current path.

g \begin{tikzpicture}
\draw[red] (0,0) circle (2pt);
\draw[red] (2,1) circle (3pt);

\draw (current bounding box.south west) rectangle
(current bounding box.north east);

\draw[red] (3,-1) circle (4pt);
\draw[thick] (current bounding box.south west) rectangle
(current bounding box.north east);

\end{tikzpicture}

Occasionally, you may want to align multiple tikzpicture environments horizontally and/or vertically
at some prescribed position. The vertical alignment can be realized by means of the baseline option since

184

TEX supports the concept of box depth natively. For horizontal alignment, things are slightly more involved.
The following approach is realized by means of negative \hspaces before and/or after the picture, thereby
removing parts of the picture. However, the actual amount of negative horizontal space is provided by means
of image coordinates using the trim left and trim right keys:

/tikz/trim left=(dimension or coordinate or default) (default Opt)

The trim left key tells PGF to discard everything which is left of the provided (dimension or
coordinate). Here, (dimension) is a single z coordinate of the picture and (coordinate) is a point
with z and y coordinates (but only its = coordinate will be used). The effect is the same as if you issue
\hspace{-s} where s is the difference of the picture’s bounding box lower left = coordinate and the z
coordinate specified as (dimension or coordinate):

Text before image Text after image.

Text before image./
\begin{tikzpicture} [trim left]
\draw (-1,-1) grid (3,2);
\fill (0,0) circle (5pt);
\end{tikzpicture}/
Text after image.

Since trim left uses the default trim left=0pt, everything left of x = 0 is removed from the bounding
box.

The following example has once the relative long label —1 and once the shorter label 1. Horizontal
alignment is established with trim left:

\begin{tikzpicture}
\draw (0,1) -- (0,0) -- (1,1) -- cycle;
\fill (0,0) circle (2pt);
-1 \node[left] at (0,0) {-1};
\end{tikzpicture}
\par
\begin{tikzpicture}
1 \draw (0,1) -- (0,0) -- (1,1) -- cycle;

\fill (0,0) circle (2pt);
\node[left] at (0,0) {1};
\end{tikzpicture}
-1 \par
\begin{tikzpicture} [trim left]
\draw (0,1) -- (0,0) -- (1,1) -- cycle;
\fill (0,0) circle (2pt);
\node[left] at (0,0) {$-1$3};
\end{tikzpicture}
\par
\begin{tikzpicture} [trim left]
\draw (0,1) -- (0,0) -- (1,1) -- cycle;
\fill (0,0) circle (2pt);
\node[left] at (0,0) {1};
\end{tikzpicture}

1

Use trim left=default to reset the value.

/tikz/trim right=(dimension or coordinate or default) (no default)

This key is similar to trim left: it discards everything which is right of the provided (dimension or
coordinate). As for trim left, (dimension) denotes a single x coordinate of the picture and (coordinate)
a coordinate with x and y value (although only its component will be used).

We use the same example from above and add trim right:

185

Text before image.@y Text. after image.

Text before image./
\begin{tikzpicture} [trim left, trim right=2cm, baseline]
\draw (-1,-1) grid (3,2);
\fill (0,0) circle (5pt);
\end{tikzpicture}/
Text after image.

In addition to trim left=0pt, we also discard everything which is right of x=2cm. Furthermore, the
baseline key supports vertical alignment as well (using the y=0Ocm baseline).

Use trim right=default to reset the value.

Note that baseline, trim left and trim right are currently the only supported way of truncated
bounding boxes which are compatible with image externalization (see the external library for details).

/pgf/trim lowlevel=true|false (no default, initially false)

This affects only the basic level image externalization: the initial configuration trim lowlevel=false
stores the normal image, without trimming, and the trimming into a separate file. This allows reduced
bounding boxes without clipping the rest away. The trim lowlevel=true information causes the image
externalization to store the trimmed image, possibly resulting in clipping.

15.9 Clipping and Fading (Soft Clipping)

Clipping path means that all painting on the page is restricted to a certain area. This area need not be
rectangular, rather an arbitrary path can be used to specify this area. The clip option, explained below, is
used to specify the region that is to be used for clipping.

A fading (a term that I propose, fadings are commonly known as soft masks, transparency masks,
opacity masks or soft clips) is similar to clipping, but a fading allows parts of the picture to be only “half
clipped”. This means that a fading can specify that newly painted pixels should be partly transparent. The
specification and handling of fadings is a bit complex and it is detailed in Section 23, which is devoted to
transparency in general.

/tikz/clip (no value)

This option causes all subsequent drawings to be clipped against the current path and the size of
subsequent paths will not be important for the picture size. If you clip against a self-intersecting path,
the even-odd rule or the nonzero winding number rule is used to determine whether a point is inside or
outside the clipping region.

The clipping path is a graphic state parameter, so it will be reset at the end of the current scope.
Multiple clippings accumulate, that is, clipping is always done against the intersection of all clipping
areas that have been specified inside the current scopes. The only way of enlarging the clipping area is
to end a {scope}l.

\begin{tikzpicture}
\draw[clip] (0,0) circle (icm);
\fill[red] (1,0) circle (icm);
\end{tikzpicture}

It is usually a very good idea to apply the clip option only to the first path command in a scope.

If you “only wish to clip” and do not wish to draw anything, you can use the \clip command, which
is a shorthand for \path[clip].

186

\begin{tikzpicture}
\clip (0,0) circle (icm);
\fill[red] (1,0) circle (icm);
\end{tikzpicture}

To keep clipping local, use {scope} environments as in the following example:

\begin{tikzpicture}
\draw (0,0) -- (O:1cm);
\draw (0,0) -- (10:1cm);

\draw (0,0) -- (20:1cm);
\draw (0,0) -- (30:1cm);
\begin{scope} [fill=7ed]
\fill[clip] (0.2,0.2) rectangle (0.5,0.5);

\draw (0,0) -- (40:1cm);
\draw (0,0) -- (50:1cm);
\draw (0,0) -- (60:1cm);
\end{scope}
\draw (0,0) -- (70:1cm);
\draw (0,0) -- (80:1cm);
\draw (0,0) -- (90:1cm);
\end{tikzpicture}

There is a slightly annoying catch: You cannot specify certain graphic options for the command used
for clipping. For example, in the above code we could not have moved the fill=red to the \fill
command. The reasons for this have to do with the internals of the PDF specification. You do not want
to know the details. It is best simply not to specify any options for these commands.

15.10 Doing Multiple Actions on a Path

If more than one of the basic actions like drawing, clipping and filling are requested, they are automatically
applied in a sensible order: First, a path is filled, then drawn, and then clipped (although it took Apple two
major revisions of their operating system to get this right...). Sometimes, however, you need finer control
over what is done with a path. For instance, you might wish to first fill a path with a color, then repaint the
path with a pattern and then repaint it with yet another pattern. In such cases you can use the following
two options:

/tikz/preaction=(options) (no default)

This option can be given to a \path command (or to derived commands like \draw which internally
call \path). Similarly to options like draw, this option only has an effect when given to a \path or as
part of the options of a node; as an option to a {scope} it has no effect.

When this option is used on a \path, the effect is the following: When the path has been completely
constructed and is about to be used, a scope is created. Inside this scope, the path is used but not with
the original path options, but with (options) instead. Then, the path is used in the usual manner. In
other words, the path is used twice: Once with {options) in force and then again with the normal path
options in force.

Here is an example in which the path consists of a rectangle. The main action is to draw this path in
red (which is why we see a red rectangle). However, the preaction is to draw the path in blue, which is
why we see a blue rectangle behind the red rectangle.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\draw
[preaction={draw, line width=4mm,blue}]
[line width=2mm,red] (0,0) rectangle (2,2);
\end{tikzpicture}

Note that when the preactions are preformed, then the path is already “finished”. In particular, applying
a coordinate transformation to the path has no effect. By comparison, applying a canvas transformation

187

does have an effect. Let us use this to add a “shadow” to a path. For this, we use the preaction to fill
the path in gray, shifted a bit to the right and down:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw
[preaction={fill=black, opacity=.5,
transform canvas={xshift=1mm,yshift=—1mm}}]
[fill=red] (0,0) rectangle (1,2)
(1,2) circle (5mm);
\end{tikzpicture}

Naturally, you would normally create a style shadow that contains the above code. The shadows library,
see Section 70, contains predefined shadows of this kind.

It is possible to use the preaction option multiple times. In this case, for each use of the preaction
option, the path is used again (thus, the (options) do not accumulate in a single usage of the path).
The path is used in the order of preaction options given.

In the following example, we use one preaction to add a shadow and another to provide a shading,
while the main action is to use a pattern.

\usetikzlibrary {patterns}
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw [pattern=fivepointed stars]
[preaction={fill=black, opacity=.5,
transform canvas={zshift=1mm,yshift=-1mm}}]
[preaction={top color=blue,bottom color=whitel}]
(0,0) rectangle (1,2)
(1,2) circle (5mm);
\end{tikzpicture}

A complicated application is shown in the following example, where the path is used several times with
different fadings and shadings to create a special visual effect:

\begin{tikzpicture}
[
% Define an interesting style
button/.style={
% First preaction: Fuzzy shadow
preaction={fill=black,path fading=circle with fuzzy edge 20 percent,
opacity=.5, transform canvas={zshift=1mm,yshift=—1mm}},
% Second preaction: Background pattern
preaction={pattern=#1,
path fading=circle with fuzzy edge 15 percent},
7% Third preaction: Make background shiny
preaction={top color=white,
bottom color=black!50,
shading angle=45,
path fading=circle with fuzzy edge 15 percent,
opacity=0.2},
/% Fourth preaction: Make edge especially shiny
preaction={path fading=fuzzy ring 15 percent,
top color=black!5,
bottom color=black!80,
shading angle=45},
inner sep=2Zex
+
button/.default=horizontal lines light blue,
circle

]

‘ \usetikzlibrary {fadings,patterns}

\draw [help lines] (0,0) grid (4,3);

\node [button] at (2.2,1) {\Huge Big};
\node [button=crosshatch dots light steel blue,
text=white] at (1,1.5) {Small};
\end{tikzpicture}

188

/tikz/postaction=(options) (no default)

The postactions work in the same way as the preactions, only they are applied after the main action
has been taken. Like preactions, multiple postaction options may be given to a \path command, in
which case the path is reused several times, each time with a different set of options in force.

If both pre- and postactions are specified, then the preactions are taken first, then the main action, and
then the post actions.

In the first example, we use a postaction to draw the path, after it has already been drawn:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\draw
[postaction={draw, line width=2mm,blue}]
[line width=4mm,red,fill=white] (0,0) rectangle (2,2);
\end{tikzpicture}

In another example, we use a postaction to “colorize” a path:

\usetikzlibrary {fadings}
& \begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw
[postaction={path fading=south, fill=white}]
[postaction={path fading=south,fading angle=45, fill=blue, opacity=.5}]
[left color=black,right color=red,draw=white,line width=2mm]
(0,0) rectangle (1,2)
(1,2) circle (5mm);
\end{tikzpicture}

15.11 Decorating and Morphing a Path

Before a path is used, it is possible to first “decorate” and/or “morph” it. Morphing means that the path
is replaced by another path that is slightly varied. Such morphings are a special case of the more general
“decorations” described in detail in Section 24. For instance, in the following example the path is drawn
twice: Once normally and then in a morphed (=decorated) manner.

\usetikzlibrary {decorations.pathmorphing}
\begin{tikzpicture}
\draw (0,0) rectangle (3,2);
\draw [red, decorate, decoration=ztgzagl
(0,0) rectangle (3,2);
\end{tikzpicture}

Naturally, we could have combined this into a single command using pre- or postaction. It is also possible
to deform shapes:

\usetikzlibrary {decorations.pathmorphing,shadows}
\begin{tikzpicture}
\node [circular drop shadow={shadow scale=1.05} minimum size=3.13cm,
decorate, decoration=zigzag,
fill=blue!20,draw,thick,circle] {Hello!};
\end{tikzpicture}

189

16 Arrows

16.1 Overview

TikZ allows you to add (multiple) arrow tips to the end of lines as in —» or in —. It is possible to change
which arrow tips are used “on-the-fly”, you can have several arrow tips in a row, and you can change the
appearance of each of them individually using a special syntax. The following example is a perhaps slightly
“excessive” demonstration of what you can do (you need to load the arrows.meta library for it to work):

\usetikzlibrary {arrows.meta,bending,positioning}

m \tikz {
\node [circle,draw] (A) {A};

\node [circle,draw] (B) [right=of A] {B};

\draw [draw = blue, thick,
arrows={
Computer Modern Rightarrow [sep]
- Latez[blue!50, length=8pt,bend, line width=0pt]
Stealth[length=8pt, open,bend, sep]}]
(A) edge [bend left=45] (B)
(B) edge [in=-110, out=-70,looseness=8] (B);
}

There are a number of predefined generic arrow tip kinds whose appearance you can modify in many
ways using various options. It is also possible to define completely new arrow tip kinds, see Section 105,
but doing this is somewhat harder than configuring an existing kind (it is like the difference between using
a font at different sizes or faces like italics, compared to designing a new font yourself).

In the present section, we go over the various ways in which you can configure which particular arrow
tips are used. The glorious details of how new arrow tips can be defined are explained in Section 105.

At the end of the present section, Section 16.5, you will find a description of the different predefined
arrow tips from the arrows.meta library.

Remark: Almost all of the features described in the following were introduced in version 3.0 of TikZ.
For compatibility reasons, the old arrow tips are still available. To differentiate between the old and new
arrow tips, the following rule is used: The new, more powerful arrow tips start with an uppercase letter as
in Latex, compared to the old arrow tip latex.

Remark: The libraries arrows and arrows.spaced are deprecated. Use arrows.meta instead/addition-
ally, which allows you to do all that the old libraries offered, plus much more. However, the old libraries
still work and you can even mix old and new arrow tips (only, the old arrow tips cannot be configured in
the ways described in the rest of this section; saying scale=2 for a latex arrow has no effect for instance,
while for Latex arrows it doubles their size as one would expect.)

16.2 Where and When Arrow Tips Are Placed
In order to add arrow tips to the lines you draw, the following conditions must be met:
1. You have specified that arrow tips should be added to lines, using the arrows key or its short form.
2. You set the tips key to some value that causes tips to be drawn (to be explained later).
3. You do not use the clip key (directly or indirectly) with the current path.
4. The path actually has two “end points” (it is not “closed”).
Let us start with an introduction to the basics of the arrows key:

/tikz/arrows=(start arrow specification)-{end arrow specification) (no default)

This option sets the arrow tip(s) to be used at the start and end of lines. An empty value as in -> for
the start indicates that no arrow tip should be drawn at the start.

Note: Since the arrow option is so often used, you can leave out the text arrows=. What happens is
that every (otherwise unknown) option that contains a - is interpreted as an arrow specification.

> \usetikzlibrary {arrows.meta}
— \begin{tikzpicture}

\draw [->] (0,0) -- (1,0);
\draw[>-Stealth] (0,0.3) -- (1,0.3);
\end{tikzpicture}

190

In the above example, the first start specification is empty and the second is >. The end specifications
are > for the first line and Stealth for the second line. Note that it makes a difference whether > is
used in a start specification or in an end specification: In an end specification it creates, as one would
expect, a pointed tip at the end of the line. In the start specification, however, it creates a “reversed”
version if this arrow — which happens to be what one would expect here.

The above specifications are very simple and only select a single arrow tip without any special configu-
ration options, resulting in the “natural” versions of these arrow tips. It is also possible to “configure”
arrow tips in many different ways, as explained in detail in Section 16.3 below by adding options in
square brackets following the arrow tip kind:

—> \usetikzlibrary {arrows.meta}
\begin{tikzpicture}
\draw[-{Stealth[red]}] (0,0) -- (1,0);
\end{tikzpicture}

Note that in the example I had to surround the end specification by braces. This is necessary so that
TikZ does not mistake the closing square bracket of the Stealth arrow tip’s options for the end of
the options of the \draw command. In general, you often need to add braces when specifying arrow
tips except for simple case like => or <<->, which are pretty frequent, though. When in doubt, say
arrows={(start spec)-(end spec)}, that will always work.

It is also possible to specify multiple (different) arrow tips in a row inside a specification, see Section 16.4
below for details.

As was pointed out earlier, to add arrow tips to a path, the path must have “end points” and not be
“closed” — otherwise adding arrow tips makes little sense, after all. However, a path can actually consist of
several subpath, which may be open or not and may even consist of only a single point (a single move-to).
In this case, it is not immediately obvious, where arrow heads should be placed. The actual rules that TikZ
uses are governed by the setting of the key tips:

/pgf/tips=(value) (default true, initially on draw)
alias /tikz/tips
This key governs in what situations arrow tips are added to a path. The following (values) are permis-
sible:
o true (the value used when no (value) is specified)
e proper
e on draw (the initial value, if the key has not yet been used at all)
e on proper draw
e never or false (same effect)

Firstly, there are a whole bunch of situations where the setting of these (or other) options causes no
arrow tips to be shown:

e If no arrow tips have been specified (for instance, by having said arrows=-), no arrow tips are
drawn.

o If the clip option is set, no arrow tips are drawn.

o If tips has been set to never or false, no arrow tips are drawn.

o If tips has been set to on draw or on proper draw, but the draw option is not set, no arrow tips
are drawn.

o If the path is empty (as in \path ;), no arrow tips are drawn.
o If at least one of the subpaths of a path is closed (cycle is used somewhere or something like
circle or rectangle), arrow tips are never drawn anywhere — even if there are open subpaths.

Now, if we pass all of the above tests, we must have a closer look at the path. All its subpaths must
now be open and there must be at least one subpath. We consider the last one. Arrow tips will only be
added to this last subpath.

1. If this last subpath not degenerate (all coordinates on the subpath are the same as in a single
“move-to” \path (0,0); or in a “move-to” followed by a “line-to” to the same position as in
\path (1,2) -- (1,2)), arrow tips are added to this last subpath now.

191

2. If the last subpath is degenerate, we add arrow tips pointing upward at the single coordinate
mentioned in the path, but only for tips begin set to true or to on draw — and not for proper
nor for on proper draw. In other words, “proper” suppresses arrow tips on degenerate paths.

7% No path, no arrow tips:
\tikz [<->] \draw;

~) Degenerate path, draw arrow tips (but no path, it is degenerate...)
\tikz [<->] \draw (0,0);

% Degenerate path, tips=proper suppresses arrows
\tikz [<->] \draw [tips=proper] (0,0);

<—— J Normal case:
\tikz [<->] \draw (0,0) -- (1,0);

/% Two subpaths, only second gets tips
\tikz [<->] \draw (0,0) -- (1,0) (2,0) -- (3,0);

i 7% Two subpaths, second degenerate, but still gets tips
\tikz [<->] \draw (0,0) -- (1,0) (2,0);

7% Two subpaths, second degenerate, proper suppresses them
\tikz [<->] \draw [tips=on proper draw] (0,0) -- (1,0) (2,0);

o —— % Two subpaths, but one is closed: No tips, even though last subpath is open
\tikz [<->] \draw (0,0) circlel[radius=2pt] (2,0) -- (3,0);

One common pitfall when arrow tips are added to a path should be addressed right here at the beginning;:
When TikZ positions an arrow tip at the start, for all its computations it only takes into account the first
segment of the subpath to which the arrow tip is added. This “first segment” is the first line-to or curve-to
operation (or arc or parabola or a similar operation) of the path; but note that decorations like snake will
add many small line segments to paths. The important point is that if this first segment is very small,
namely smaller that the arrow tip itself, strange things may result. As will be explained in Section 16.3.8,
TikZ will modify the path by shortening the first segment and shortening a segment below its length may
result in strange effects. Similarly, for tips at the end of a subpath, only the last segment is considered.

The bottom line is that wherever an arrow tip is added to a path, the line segment where it is added
should be “long enough”.

16.3 Arrow Keys: Configuring the Appearance of a Single Arrow Tip

For standard arrow tip kinds, like Stealth or Latex or Bar, you can easily change their size, aspect ratio,
color, and other parameters. This is similar to selecting a font face from a font family: “This text” is not just
typeset in the font “Computer Modern”, but rather in “Computer Modern, italic face, 11pt size, medium
weight, black color, no underline, ..” Similarly, an arrow tip is not just a “Stealth” arrow tip, but rather a
“Stealth arrow tip at its natural size, flexing, but not bending along the path, miter line caps, draw and fill
colors identical to the path draw color, ..”

Just as most programs make it easy to “configure” which font should be used at a certain point in a text,
TikZ tries to make it easy to specify which configuration of an arrow tip should be used. You use arrow keys,
where a certain parameter like the length of an arrow is set to a given value using the standard key—value
syntax. You can provide several arrow keys following an arrow tip kind in an arrow tip specification as in
Stealth[length=4pt,width=2pt].

While selecting a font may be easy, designing a new font is a highly creative and difficult process and
more often than not, not all faces of a font are available on any given system. The difficulties involved in
designing a new arrow tip are somewhat similar to designing a new letter for a font and, thus, it may also
happen that not all configuration options are actually implemented for a given arrow tip. Naturally, for the

192

standard arrow tips, all configuration options are available — but for special-purpose arrow tips it may well
happen that an arrow tip kind simply “ignores” some of the configurations given by you.

Some of the keys explained in the following are defined in the library arrows.meta, others are always
available. This has to do with the question of whether the arrow key needs to be supported directly in the
PGF core or not. In general, the following explanations assume that arrows.meta has been loaded.

16.3.1 Size

The most important configuration parameter of an arrow tip is undoubtedly its size. The following two keys
are the main keys that are important in this context:

/pgf/arrow keys/length=(dimension) (line width factor) (outer factor) (no default)
This parameter is usually the most important parameter that governs the size of an arrow tip: The
(dimension) that you provide dictates the distance from the “very tip” of the arrow to its “back end”
along the line:

\usetikzlibrary {arrows.meta}
Smm
\tikz{

N \draw [-{Stealth[length=5mm]}] (0,0) -- (2,0);
) \draw [|<->|] (1.5,.4) -- nodel[above=Imm] {5mm} (2,.4);

}

\usetikzlibrary {arrows.meta}
\tikz{
\draw [-{Latex[length=5mm]}] (0,0) -- (2,0);

' \draw [|<->|] (1.5,.4) -- nodel[above=Imm] {5mm} (2,.4);

}

S5mm

\usetikzlibrary {arrows.meta}

e \tikz{
\draw [-{Classical TikZ Rightarrow[length=5mm]}] (0,0) -- (2,0);
\draw [|<->|] (1.5,.6) -- nodel[above=Imm] {5mm} (2,.6);

; }

The Line Width Factors. Following the (dimension), you may put a space followed by a (line width
factor), which must be a plain number (no pt or cm following). When you provide such a number, the
size of the arrow tip is not just (dimension), but rather (dimension) + (line width factor) - w where w
is the width of the to-be-drawn path. This makes it easy to vary the size of an arrow tip in accordance
with the line width — usually a very good idea since thicker lines will need thicker arrow tips.

As an example, when you write length=0Opt 5, the length of the arrow will be exactly five times the
current line width. As another example, the default length of a Latex arrow is length=3pt 4.5 0.8.
Let us ignore the 0.8 for a moment; the 3pt 4.5 then means that for the standard line width of 0.4pt,
the length of a Latex arrow will be exactly 4.8pt (3pt plus 4.5 times 0.4pt).

Following the line width factor, you can additionally provide an (outer factor), again preceded by a
space (the 0.8 in the above example). This factor is taken into consid