Class DefaultGroovyMethods
public static String reverse(String self)
 provides a reverse() method for String.
 NOTE: While this class contains many 'public' static methods, it is primarily regarded as an internal class (its internal package name suggests this also). We value backwards compatibility of these methods when used within Groovy but value less backwards compatibility at the Java method call level. I.e. future versions of Groovy may remove or move a method call in this file but would normally aim to keep the method available from within Groovy.
- 
Field SummaryFields
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptionstatic doubleGet the absolute valuestatic floatGet the absolute valuestatic longGet the absolute valuestatic intGet the absolute valuestatic <T> booleanaddAll(Collection<T> self, Iterable<? extends T> items) Adds all items from the iterable to the Collection.static <T> booleanaddAll(Collection<T> self, Iterator<? extends T> items) Adds all items from the iterator to the Collection.static <T> booleanaddAll(Collection<T> self, T[] items) Modifies the collection by adding all the elements in the specified array to the collection.static <T> booleanModifies this list by inserting all the elements in the specified array into the list at the specified position.static voidaddShutdownHook(Object self, Closure closure) Allows the usage of addShutdownHook without getting the runtime first.static BooleanLogical conjunction of two boolean operators.static NumberBitwise AND together two Numbers.static BitSetBitwise AND together two BitSets.static <T> booleanIterates over the contents of an iterable, and checks whether a predicate is valid for at least one element.static booleanIterates over the elements of a collection, and checks whether at least one element is true according to the Groovy Truth.static booleanIterates over the contents of an object or collection, and checks whether a predicate is valid for at least one element.static <T> booleanIterates over the contents of an iterator, and checks whether a predicate is valid for at least one element.static <K,V> boolean Iterates over the entries of a map, and checks whether a predicate is valid for at least one entry.static <T> booleanIterates over the contents of an Array, and checks whether a predicate is valid for at least one element.static booleanasBoolean(boolean[] array) Coerces a boolean array to a boolean value.static booleanasBoolean(byte[] array) Coerces a byte array to a boolean value.static booleanasBoolean(char[] array) Coerces a char array to a boolean value.static booleanasBoolean(double[] array) Coerces a double array to a boolean value.static booleanasBoolean(float[] array) Coerces a float array to a boolean value.static booleanasBoolean(int[] array) Coerces an int array to a boolean value.static booleanasBoolean(long[] array) Coerces a long array to a boolean value.static booleanasBoolean(short[] array) Coerces a short array to a boolean value.static booleanCoerce a Boolean instance to a boolean value.static booleanCoerce a character to a boolean value.static booleanCoerce a Double instance to a boolean value.static booleanCoerce a Float instance to a boolean value.static booleanCoerce a number to a boolean value.static booleanCoerce an object instance to a boolean value.static booleanCoerce an Object array to a boolean value.static booleanasBoolean(Collection collection) Coerce a collection instance to a boolean value.static booleanasBoolean(Enumeration enumeration) Coerce an enumeration instance to a boolean value.static booleanCoerce an iterator instance to a boolean value.static booleanCoerce a map instance to a boolean value.static <T> Collection<T>asCollection(Iterable<T> self) Converts this Iterable to a Collection.static <T> Collection<T>asImmutable(Collection<T> self) A convenience method for creating an immutable Collection.static <T> List<T>asImmutable(List<T> self) A convenience method for creating an immutable List.static <K,V> Map<K, V> asImmutable(Map<K, V> self) A convenience method for creating an immutable Map.static <T> Set<T>asImmutable(Set<T> self) A convenience method for creating an immutable Set.static <K,V> SortedMap<K, V> asImmutable(SortedMap<K, V> self) A convenience method for creating an immutable SortedMap.static <T> SortedSet<T>asImmutable(SortedSet<T> self) A convenience method for creating an immutable SortedSet.static <T> List<T>Converts this Iterable to a List.static <T> List<T>asReversed(List<T> self) Creates a view list with reversed order, and the order of original list will not change.static <T> NavigableSet<T>asReversed(NavigableSet<T> self) Creates a reverse order view of the set.static StringGet the detail information ofThrowableinstance's stack tracestatic <T> Collection<T>asSynchronized(Collection<T> self) A convenience method for creating a synchronized Collection.static <T> List<T>asSynchronized(List<T> self) A convenience method for creating a synchronized List.static <K,V> Map<K, V> asSynchronized(Map<K, V> self) A convenience method for creating a synchronized Map.static <T> Set<T>asSynchronized(Set<T> self) A convenience method for creating a synchronized Set.static <K,V> SortedMap<K, V> asSynchronized(SortedMap<K, V> self) A convenience method for creating a synchronized SortedMap.static <T> SortedSet<T>asSynchronized(SortedSet<T> self) A convenience method for creating a synchronized SortedSet.static <T> TCoerces the closure to an implementation of the given class.static <T> TConverts the given iterable to another type.static <T> TTransform this number to the given type, using the 'as' operator.static <T> TConverts the given array to either a List, Set, or SortedSet.static <T> TConverts a given object to a type.static <T> TasType(Collection col, Class<T> clazz) Converts the given collection to another type.static <T> TCoerces this map to the given type, using the map's keys as the public method names, and values as the implementation.static <T> Collection<T>asUnmodifiable(Collection<T> self) Creates an unmodifiable view of a Collection.static <T> List<T>asUnmodifiable(List<T> self) Creates an unmodifiable view of a List.static <K,V> Map<K, V> asUnmodifiable(Map<K, V> self) Creates an unmodifiable view of a Map.static <T> Set<T>asUnmodifiable(Set<T> self) Creates an unmodifiable view of a Set.static <K,V> SortedMap<K, V> asUnmodifiable(SortedMap<K, V> self) Creates an unmodifiable view of a SortedMap.static <T> SortedSet<T>asUnmodifiable(SortedSet<T> self) Creates an unmodifiable view of a SortedSet.static BigDecimalaverage(byte[] self) Calculates the average of the bytes in the array.static doubleaverage(double[] self) Calculates the average of the doubles in the array.static doubleaverage(float[] self) Calculates the average of the floats in the array.static BigDecimalaverage(int[] self) Calculates the average of the ints in the array.static BigDecimalaverage(long[] self) Calculates the average of the longs in the array.static BigDecimalaverage(short[] self) Calculates the average of the shorts in the array.static ObjectAverages the items in an Iterable.static <T> ObjectAverages the result of applying a closure to each item of an Iterable.static ObjectAverages the items in an array.static ObjectAverages the items from an Iterator.static <T> ObjectAverages the result of applying a closure to each item returned from an iterator.static <T> ObjectAverages the result of applying a closure to each item of an array.static NumberbitwiseNegate(Number left) Bitwise NEGATE a Number.static BitSetbitwiseNegate(BitSet self) Bitwise NEGATE a BitSet.static <T> BufferedIterator<T>Returns aBufferedIteratorthat allows examining the next element without consuming it.static <T> BufferedIterator<T>bufferedIterator(Iterable<T> self) Returns aBufferedIteratorthat allows examining the next element without consuming it.static <T> BufferedIterator<T>bufferedIterator(List<T> self) Returns aBufferedIteratorthat allows examining the next element without consuming it.protected static <T> TcallClosureForLine(Closure<T> closure, String line, int counter) protected static <T,K, V> T callClosureForMapEntry(Closure<T> closure, Map.Entry<K, V> entry) protected static <T,K, V> T callClosureForMapEntryAndCounter(Closure<T> closure, Map.Entry<K, V> entry, int counter) Chops the Iterable into pieces, returning lists with sizes corresponding to the supplied chop sizes.Chops the iterator items into pieces, returning lists with sizes corresponding to the supplied chop sizes.chop(T[] self, int... chopSizes) Chops the array into pieces, returning lists with sizes corresponding to the supplied chop sizes.Collates this iterable into sub-lists of lengthsize.Collates this iterable into sub-lists of lengthsize.Collates this iterable into sub-lists of lengthsizestepping through the codestepelements for each subList.Collates this iterable into sub-lists of lengthsizestepping through the codestepelements for each sub-list.collate(T[] self, int size) Collates an array.collate(T[] self, int size, boolean keepRemainder) Collates this array into sub-lists.collate(T[] self, int size, int step) Collates an array into sub-lists.collate(T[] self, int size, int step, boolean keepRemainder) Collates this array into sub-lists.static <E,T, C extends Collection<T>> 
 CIterates through this Array transforming each item into a new value using thetransformclosure and adding it to the suppliedcollector.static <E,T> List<T> Iterates through this Array transforming each item into a new value using thetransformclosure, returning a list of transformed values.static <E,T, C extends Collection<T>> 
 CIterates through this collection transforming each value into a new value using thetransformclosure and adding it to the suppliedcollector.static <E,T> List<T> Iterates through this Iterable transforming each entry into a new value using thetransformclosure returning a list of transformed values.static <T> List<T>Iterates through this collection transforming each entry into a new value using Closure.IDENTITY as a transformer, basically returning a list of items copied from the original collection.static CollectionIterates through this aggregate Object transforming each item into a new value using Closure.IDENTITY as a transformer, basically returning a list of items copied from the original object.static <T,C extends Collection<T>> 
 CIterates through this aggregate Object transforming each item into a new value using thetransformclosure and adding it to the suppliedcollector.static <T> List<T>Iterates through this aggregate Object transforming each item into a new value using thetransformclosure, returning a list of transformed values.static <E,T, C extends Collection<T>> 
 CIterates through this Iterator transforming each item into a new value using thetransformclosure and adding it to the suppliedcollector.static <E,T> List<T> Iterates through this Iterator transforming each item into a new value using thetransformclosure, returning a list of transformed values.static <T,K, V, C extends Collection<T>> 
 CIterates through this Map transforming each map entry into a new value using thetransformclosure returning thecollectorwith all transformed values added to it.static <T,K, V> List<T> Iterates through this Map transforming each map entry into a new value using thetransformclosure returning a list of transformed values.static <K,V, E> Map<K, V> collectEntries(E[] self) A variant of collectEntries using the identity closure as the transform.static <K,V, E> Map<K, V> collectEntries(E[] self, Closure<?> transform) Iterates through this array transforming each item using thetransformclosure and returning a map of the resulting transformed entries.static <K,V, E> Map<K, V> collectEntries(E[] self, Map<K, V> collector) A variant of collectEntries using the identity closure as the transform.static <K,V, E> Map<K, V> collectEntries(E[] self, Map<K, V> collector, Closure<?> transform) Iterates through this array transforming each item using thetransformclosure and returning a map of the resulting transformed entries.static <K,V> Map<K, V> collectEntries(Iterable<?> self) A variant of collectEntries for Iterable objects using the identity closure as the transform.static <K,V> Map<K, V> collectEntries(Iterable<?> self, Map<K, V> collector) A variant of collectEntries for Iterables using the identity closure as the transform and a supplied map as the destination of transformed entries.static <K,V, E> Map<K, V> collectEntries(Iterable<E> self, Closure<?> transform) Iterates through this Iterable transforming each item using thetransformclosure and returning a map of the resulting transformed entries.static <K,V, E> Map<K, V> collectEntries(Iterable<E> self, Map<K, V> collector, Closure<?> transform) Iterates through this Iterable transforming each item using the closure as a transformer into a map entry, returning the supplied map with all the transformed entries added to it.static <K,V> Map<K, V> collectEntries(Iterator<?> self) A variant of collectEntries for Iterators using the identity closure as the transform.static <K,V> Map<K, V> collectEntries(Iterator<?> self, Map<K, V> collector) A variant of collectEntries for Iterators using the identity closure as the transform and a supplied map as the destination of transformed entries.static <K,V, E> Map<K, V> collectEntries(Iterator<E> self, Closure<?> transform) A variant of collectEntries for Iterators.static <K,V, E> Map<K, V> collectEntries(Iterator<E> self, Map<K, V> collector, Closure<?> transform) A variant of collectEntries for Iterators using a supplied map as the destination of transformed entries.static <K,V, X, Y> Map<K, V> collectEntries(Map<X, Y> self, Closure<?> transform) Iterates through this Map transforming each entry using thetransformclosure and returning a map of the transformed entries.static <K,V, X, Y> Map<K, V> collectEntries(Map<X, Y> self, Map<K, V> collector, Closure<?> transform) Iterates through this Map transforming each map entry using thetransformclosure returning a map of the transformed entries.static <T,E, C extends Collection<T>> 
 CcollectMany(E[] self, C collector, Closure<? extends Collection<? extends T>> projection) Projects each item from a source array to a collection and concatenates (flattens) the resulting collections into a single list.static <T,E> List<T> collectMany(E[] self, Closure<? extends Collection<? extends T>> projection) Projects each item from a source array to a collection and concatenates (flattens) the resulting collections into a single list.static <T,E, C extends Collection<T>> 
 CcollectMany(Iterable<E> self, C collector, Closure<? extends Collection<? extends T>> projection) Projects each item from a source collection to a result collection and concatenates (flattens) the resulting collections adding them into thecollector.static <T,E> List<T> collectMany(Iterable<E> self, Closure<? extends Collection<? extends T>> projection) Projects each item from a source Iterable to a collection and concatenates (flattens) the resulting collections into a single list.static <T,E, C extends Collection<T>> 
 CcollectMany(Iterator<E> self, C collector, Closure<? extends Collection<? extends T>> projection) Projects each item from a source iterator to a collection and concatenates (flattens) the resulting collections into a single list.static <T,E> List<T> collectMany(Iterator<E> self, Closure<? extends Collection<? extends T>> projection) Projects each item from a source iterator to a collection and concatenates (flattens) the resulting collections into a single list.static <T,K, V, C extends Collection<T>> 
 CcollectMany(Map<K, V> self, C collector, Closure<? extends Collection<? extends T>> projection) Projects each item from a source map to a result collection and concatenates (flattens) the resulting collections adding them into thecollector.static <T,K, V> List<T> collectMany(Map<K, V> self, Closure<? extends Collection<? extends T>> projection) Projects each item from a source map to a result collection and concatenates (flattens) the resulting collections adding them into a collection.static <T,K, V> Collection<T> collectMany$$bridge(Map<K, V> self, Closure<? extends Collection<? extends T>> projection) Deprecated.static <C extends Collection>
 CcollectNested(Iterable self, C collector, Closure transform) Recursively iterates through this Iterable transforming each non-Collection value into a new value using thetransformclosure.static ListcollectNested(Iterable self, Closure transform) Recursively iterates through this Iterable transforming each non-Collection value into a new value using the closure as a transformer.static ListcollectNested(Collection self, Closure transform) Recursively iterates through this collection transforming each non-Collection value into a new value using the closure as a transformer.static Listcombinations(Iterable self) Adds GroovyCollections#combinations(Iterable) as a method on Iterables.static Listcombinations(Iterable self, Closure<?> function) Adds GroovyCollections#combinations(Iterable, Closure) as a method on collections.static intCompare two Characters.static intCompare a Character and a Number.static intCompare a Number and a Character.static intCompare two Numbers.static booleanChecks whether the array contains the given value.static booleanChecks whether the array contains the given value.static booleanChecks whether the array contains the given value.static booleanChecks whether the array contains the given value.static booleanChecks whether the array contains the given value.static booleanChecks whether the array contains the given value.static booleanChecks whether the array contains the given value.static booleanChecks whether the array contains the given value.static booleanReturns true if this iterable contains the item.static booleanChecks whether the array contains the given value.static booleancontainsAll(Iterable<?> self, Object[] items) Returns true if this iterable contains all the elements in the specified array.static NumberCounts the number of occurrences of the given value inside this array.static NumberCounts the number of occurrences of the given value inside this array.static NumberCounts the number of occurrences of the given value inside this array.static NumberCounts the number of occurrences of the given value inside this array.static NumberCounts the number of occurrences of the given value inside this array.static NumberCounts the number of occurrences of the given value inside this array.static NumberCounts the number of occurrences of the given value inside this array.static NumberCounts the number of occurrences of the given value inside this array.static <T,E extends Number> 
 ECounts the number of occurrences which satisfy the given closure from inside this Iterable.static <T> NumberCounts the number of occurrences which satisfy the given closure from inside this Iterable.static NumberCounts the number of occurrences of the given value inside this Iterable.static NumberCounts the number of occurrences of the given value inside this array.static <T,E extends Number> 
 ECounts the number of occurrences which satisfy the given closure from the items within this Iterator, adding the count to the initial count.static <T> NumberCounts the number of occurrences which satisfy the given closure from the items within this Iterator.static NumberCounts the number of occurrences of the given value from the items within this Iterator.static <K,V, E extends Number> 
 ECounts the number of occurrences which satisfy the given closure from inside this map.static <K,V> Number Counts the number of occurrences which satisfy the given closure from inside this map.static <T> NumberCounts the number of occurrences which satisfy the given closure from inside this array.Sorts all array members into groups determined by the supplied mapping closure and counts the group size.Sorts all collection members into groups determined by the supplied mapping closure and counts the group size.Sorts all iterator items into groups determined by the supplied mapping closure and counts the group size.Groups the members of a map into groups determined by the supplied mapping closure and counts the frequency of the created groups.static booleanReturnstrueif the intersection of two iterables is empty.static NumberDivide one Character by another.static NumberDivide a Character by a Number.static NumberDivide a Number by a Character.static voidIterates from this number down to the given number, inclusive, decrementing by one each time.static voidIterates from this number down to the given number, inclusive, decrementing by one each time.static voidIterates from this number down to the given number, inclusive, decrementing by one each time.static voidIterates from this number down to the given number, inclusive, decrementing by one each time.static voidIterates from this number down to the given number, inclusive, decrementing by one each time.static voidIterates from this number down to the given number, inclusive, decrementing by one each time.static voidIterates from this number down to the given number, inclusive, decrementing by one each time.static voiddownto(BigDecimal self, Number to, Closure closure) Iterates from this number down to the given number, inclusive, decrementing by one each time.static voiddownto(BigInteger self, Number to, Closure closure) Iterates from this number down to the given number, inclusive, decrementing by one each time.static <T> Collection<T>Drops the given number of elements from the head of this Iterable.static <T> Iterator<T>Drops the given number of elements from the head of this iterator if they are available.static <T> List<T>Drops the given number of elements from the head of this List.static <K,V> Map<K, V> Drops the given number of key/value pairs from the head of this map if they are available.static <T> SortedSet<T>Drops the given number of elements from the head of this List.static <T> T[]drop(T[] self, int num) Drops the given number of elements from the head of this array if they are available.static <T> Collection<T>Drops the given number of elements from the tail of this Iterable.static <T> Iterator<T>Drops the given number of elements from the tail of this Iterator.static <T> List<T>Drops the given number of elements from the tail of this List.static <T> SortedSet<T>Drops the given number of elements from the tail of this SortedSet.static <T> T[]dropRight(T[] self, int num) Drops the given number of elements from the tail of this array if they are available.static <T> Collection<T>Returns a suffix of this Iterable where elements are dropped from the front while the given closure evaluates to true.static <T> Iterator<T>Creates an Iterator that returns a suffix of the elements from an original Iterator.static <T> List<T>Returns a suffix of this List where elements are dropped from the front while the given Closure evaluates to true.static <K,V> Map<K, V> Create a suffix of the given Map by dropping as many entries as possible from the front of the original Map such that calling the given closure condition evaluates to true when passed each of the dropped entries (or key/value pairs).static <T> SortedSet<T>Returns a suffix of this SortedSet where elements are dropped from the front while the given Closure evaluates to true.static <T> T[]Create a suffix of the given array by dropping as many elements as possible from the front of the original array such that calling the given closure condition evaluates to true when passed each of the dropped elements.static StringGenerates a detailed dump string of an object showing its class, hashCode and all accessible fields.static <T> Iterable<T>Iterates through an Iterable, passing each item to the given closure.static <T> Collection<T>each(Collection<T> self, Closure closure) Iterates through a Collection, passing each item to the given closure.static <T> Iterator<T>Iterates through an Iterator, passing each item to the given closure.static <T> List<T>Iterates through a List, passing each item to the given closure.static <K,V> Map<K, V> Allows a Map to be iterated through using a closure.static <T> Set<T>Iterates through a Set, passing each item to the given closure.static <T> SortedSet<T>Iterates through a SortedSet, passing each item to the given closure.static <T> T[]Iterates through an array passing each array entry to the given closure.static <T> TIterates through an aggregate type or data structure, passing each item to the given closure.static voidTraverse through each byte of this byte array.static voidTraverse through each byte of this Byte array.static voideachCombination(Iterable self, Closure<?> function) Applies a function on each combination of the input lists.eachPermutation(Iterable<T> self, Closure closure) Iterates over all permutations of a collection, running a closure for each iteration.static <T> Iterable<T>eachWithIndex(Iterable<T> self, Closure closure) Iterates through an iterable type, passing each item and the item's index (a counter starting at zero) to the given closure.static <T> Collection<T>eachWithIndex(Collection<T> self, Closure closure) Iterates through a Collection, passing each item and the item's index (a counter starting at zero) to the given closure.static <T> Iterator<T>eachWithIndex(Iterator<T> self, Closure closure) Iterates through an iterator type, passing each item and the item's index (a counter starting at zero) to the given closure.static <T> List<T>eachWithIndex(List<T> self, Closure closure) Iterates through a List, passing each item and the item's index (a counter starting at zero) to the given closure.static <K,V> Map<K, V> eachWithIndex(Map<K, V> self, Closure<?> closure) Allows a Map to be iterated through using a closure.static <T> Set<T>eachWithIndex(Set<T> self, Closure closure) Iterates through a Set, passing each item and the item's index (a counter starting at zero) to the given closure.static <T> SortedSet<T>eachWithIndex(SortedSet<T> self, Closure closure) Iterates through a SortedSet, passing each item and the item's index (a counter starting at zero) to the given closure.static <T> T[]eachWithIndex(T[] self, Closure closure) Iterates through an array, passing each array element and the element's index (a counter starting at zero) to the given closure.static <T> TeachWithIndex(T self, Closure closure) Iterates through an aggregate type or data structure, passing each item and the item's index (a counter starting at zero) to the given closure.static booleanequals(int[] left, int[] right) Compare the contents of this array to the contents of the given array.static booleanDetermines if the contents of this array are equal to the contents of the given list, in the same order.static booleanDetermines if the contents of this list are equal to the contents of the given array in the same order.static booleanCompare the contents of two Lists.static booleanCompares two Maps treating coerced numerical values as identical.static <T> booleanCompare the contents of two Sets for equality using Groovy's coercion rules.static booleanequalsIgnoreZeroSign(Double number, Object other) Compares this object against the specified object returning the same result asDouble.equals(Object)but returning true if this object and the specified object are both zero and negative zero respectively or vice versa.static booleanequalsIgnoreZeroSign(Float number, Object other) Compares this object against the specified object returning the same result asFloat.equals(Object)but returning true if this object and the specified object are both zero and negative zero respectively or vice versa.static <T> booleanUsed to determine if the given predicate closure is valid (i.e.static booleanIterates over every element of a collection, and checks whether all elements aretrueaccording to the Groovy Truth.static booleanUsed to determine if the given predicate closure is valid (i.e.static <T> booleanUsed to determine if the given predicate closure is valid (i.e.static <K,V> boolean Iterates over the entries of a map, and checks whether a predicate is valid for all entries.static <T> booleanUsed to determine if the given predicate closure is valid (i.e.static ObjectFinds the first item matching the IDENTITY Closure (i.e. matching Groovy truth).static ObjectFinds the first value matching the closure condition.static <T> Tfind(Collection<T> self) Finds the first item matching the IDENTITY Closure (i.e. matching Groovy truth).static <T> Tfind(Collection<T> self, Closure closure) Finds the first value matching the closure condition.static <K,V> Map.Entry<K, V> Finds the first entry matching the closure condition.static <T> TFinds the first element in the array that matches the given closure condition.static ListFinds all items matching the IDENTITY Closure (i.e. matching Groovy truth).static ListFinds all items matching the closure condition.static <T> Collection<T>findAll(Collection<T> self) Finds the items matching the IDENTITY Closure (i.e. matching Groovy truth).static <T> Collection<T>findAll(Collection<T> self, Closure closure) Finds all values matching the closure condition.static <T> List<T>Finds the items matching the IDENTITY Closure (i.e. matching Groovy truth).static <T> List<T>Finds all values matching the closure condition.static <K,V> Map<K, V> Finds all entries matching the closure condition.static <T> Set<T>Finds the items matching the IDENTITY Closure (i.e. matching Groovy truth).static <T> Set<T>Finds all values matching the closure condition.static <T> List<T>findAll(T[] self) Finds the elements of the array matching the IDENTITY Closure (i.e. matching Groovy truth).static <T> List<T>Finds all elements of the array matching the given Closure condition.static CollectionfindAll$$bridge(Object self) Deprecated.static CollectionfindAll$$bridge(Object self, Closure closure) Deprecated.static <T> Collection<T>findAll$$bridge(T[] self) Deprecated.static <T> Collection<T>findAll$$bridge(T[] self, Closure condition) Deprecated.static <T> intfindIndexOf(Iterable<T> self, int startIndex, Closure condition) Iterates over the elements of an Iterable, starting from a specified startIndex, and returns the index of the first item that satisfies the condition specified by the closure.static <T> intfindIndexOf(Iterable<T> self, Closure condition) Iterates over the elements of an Iterable and returns the index of the first item that satisfies the condition specified by the closure.static intfindIndexOf(Object self, int startIndex, Closure condition) Iterates over the elements of an aggregate of items, starting from a specified startIndex, and returns the index of the first item that matches the condition specified in the closure.static intfindIndexOf(Object self, Closure condition) Iterates over the elements of an aggregate of items and returns the index of the first item that matches the condition specified in the closure.static <T> intfindIndexOf(Iterator<T> self, int startIndex, Closure condition) Iterates over the elements of an Iterator, starting from a specified startIndex, and returns the index of the first item that satisfies the condition specified by the closure.static <T> intfindIndexOf(Iterator<T> self, Closure condition) Iterates over the elements of an Iterator and returns the index of the first item that satisfies the condition specified by the closure.static <T> intfindIndexOf(T[] self, int startIndex, Closure condition) Iterates over the elements of an Array, starting from a specified startIndex, and returns the index of the first item that satisfies the condition specified by the closure.static <T> intfindIndexOf(T[] self, Closure condition) Iterates over the elements of an Array and returns the index of the first item that satisfies the condition specified by the closure.findIndexValues(Iterable<T> self, Closure condition) Iterates over the elements of an Iterable and returns the index values of the items that match the condition specified in the closure.findIndexValues(Iterable<T> self, Number startIndex, Closure condition) Iterates over the elements of an Iterable, starting from a specified startIndex, and returns the index values of the items that match the condition specified in the closure.findIndexValues(Object self, Closure condition) Iterates over the elements of an aggregate of items and returns the index values of the items that match the condition specified in the closure.findIndexValues(Object self, Number startIndex, Closure condition) Iterates over the elements of an aggregate of items, starting from a specified startIndex, and returns the index values of the items that match the condition specified in the closure.findIndexValues(Iterator<T> self, Closure condition) Iterates over the elements of an Iterator and returns the index values of the items that match the condition specified in the closure.findIndexValues(Iterator<T> self, Number startIndex, Closure condition) Iterates over the elements of an Iterator, starting from a specified startIndex, and returns the index values of the items that match the condition specified in the closure.findIndexValues(T[] self, Closure condition) Iterates over the elements of an Array and returns the index values of the items that match the condition specified in the closure.findIndexValues(T[] self, Number startIndex, Closure condition) Iterates over the elements of an Array, starting from a specified startIndex, and returns the index values of the items that match the condition specified in the closure.static <T> intfindLastIndexOf(Iterable<T> self, int startIndex, Closure condition) Iterates over the elements of an Iterable, starting from a specified startIndex, and returns the index of the last item that matches the condition specified in the closure.static <T> intfindLastIndexOf(Iterable<T> self, Closure condition) Iterates over the elements of an Iterable and returns the index of the last item that matches the condition specified in the closure.static intfindLastIndexOf(Object self, int startIndex, Closure condition) Iterates over the elements of an aggregate of items, starting from a specified startIndex, and returns the index of the last item that matches the condition specified in the closure.static intfindLastIndexOf(Object self, Closure condition) Iterates over the elements of an aggregate of items and returns the index of the last item that matches the condition specified in the closure.static <T> intfindLastIndexOf(Iterator<T> self, int startIndex, Closure condition) Iterates over the elements of an Iterator, starting from a specified startIndex, and returns the index of the last item that matches the condition specified in the closure.static <T> intfindLastIndexOf(Iterator<T> self, Closure condition) Iterates over the elements of an Iterator and returns the index of the last item that matches the condition specified in the closure.static <T> intfindLastIndexOf(T[] self, int startIndex, Closure condition) Iterates over the elements of an Array, starting from a specified startIndex, and returns the index of the last item that matches the condition specified in the closure.static <T> intfindLastIndexOf(T[] self, Closure condition) Iterates over the elements of an Array and returns the index of the last item that matches the condition specified in the closure.static <S,T, U extends T, V extends T> 
 TfindResult(Iterable<S> self, U defaultResult, Closure<V> condition) Iterates through the Iterable calling the given closure condition for each item but stopping once the first non-null result is found and returning that result.static <T> TfindResult(Iterable<T> self) Iterates through the Iterable stopping once the first non-null result is found and returning that result.static <T,U> T findResult(Iterable<U> self, Closure<T> condition) Iterates through the Iterable calling the given closure condition for each item but stopping once the first non-null result is found and returning that result.static <T,U extends T, V extends T> 
 TfindResult(Iterable<U> self, V defaultResult) Iterates through the Iterable calling the given closure condition for each item but stopping once the first non-null result is found and returning that result.static ObjectfindResult(Object self) Treats the object as iterable, iterating through the values it represents and returns the first non-null value, otherwise returns null.static ObjectfindResult(Object self, Closure condition) Treats the object as iterable, iterating through the values it represents and returns the first non-null result obtained from calling the closure, otherwise returns null.static ObjectfindResult(Object self, Object defaultResult) Treats the object as iterable, iterating through the values it represents and returns the first non-null result, otherwise returns the defaultResult.static ObjectfindResult(Object self, Object defaultResult, Closure condition) Treats the object as iterable, iterating through the values it represents and returns the first non-null result obtained from calling the closure, otherwise returns the defaultResult.static <S,T, U extends T, V extends T> 
 TfindResult(Iterator<S> self, U defaultResult, Closure<V> condition) Iterates through the Iterator calling the given closure condition for each item but stopping once the first non-null result is found and returning that result.static <T> TfindResult(Iterator<T> self) Iterates through the Iterator stopping once the first non-null result is found and returning that result.static <T,U> T findResult(Iterator<U> self, Closure<T> condition) Iterates through the Iterator calling the given closure condition for each item but stopping once the first non-null result is found and returning that result.static <T,U extends T, V extends T> 
 TfindResult(Iterator<U> self, V defaultResult) Iterates through the Iterator stopping once the first non-null result is found and returning that result.static <T,U extends T, V extends T, A, B> 
 TfindResult(Map<A, B> self, U defaultResult, Closure<V> condition) Returns the first non-null closure result found by passing each map entry to the closure, otherwise the defaultResult is returned.static <T,K, V> T findResult(Map<K, V> self, Closure<T> condition) Returns the first non-null closure result found by passing each map entry to the closure, otherwise null is returned.static <S,T> T findResult(S[] self, Closure<T> condition) Iterates through the Array calling the given closure condition for each item but stopping once the first non-null result is found and returning that result.static <S,T, U extends T, V extends T> 
 TfindResult(S[] self, U defaultResult, Closure<V> condition) Iterates through the Array calling the given closure condition for each item but stopping once the first non-null result is found and returning that result.static <T> TfindResult(T[] self) Iterates through the Array stopping once the first non-null result is found and returning that result.static <T,U extends T, V extends T> 
 TfindResult(U[] self, V defaultResult) Iterates through the Array stopping once the first non-null result is found and returning that result.static <T> Collection<T>findResults(Iterable<T> self) Iterates through the Iterable collecting any non-null results.static <T,U> Collection<T> findResults(Iterable<U> self, Closure<T> filteringTransform) Iterates through the Iterable transforming items using the supplied closure and collecting any non-null results.static <T> Collection<T>findResults(Iterator<T> self) Iterates through the Iterator collecting any non-null results.static <T,U> Collection<T> findResults(Iterator<U> self, Closure<T> filteringTransform) Iterates through the Iterator transforming items using the supplied closure and collecting any non-null results.static <T,K, V> Collection<T> findResults(Map<K, V> self, Closure<T> filteringTransform) Iterates through the map transforming items using the supplied closure and collecting any non-null results.static <T> Collection<T>findResults(T[] self) Iterates through the Array collecting any non-null results.static <T,U> Collection<T> findResults(U[] self, Closure<T> filteringTransform) Iterates through the Array transforming items using the supplied closure and collecting any non-null results.static <T> TReturns the first item from the Iterable.static <T> TReturns the first item from the List.static <T> Tfirst(T[] self) Returns the first item from the array.static Collectionflatten(boolean[] self) Flatten an array.static Collectionflatten(byte[] self) Flatten an array.static Collectionflatten(char[] self) Flatten an array.static Collectionflatten(double[] self) Flatten an array.static Collectionflatten(float[] self) Flatten an array.static Collectionflatten(int[] self) Flatten an array.static Collectionflatten(long[] self) Flatten an array.static Collectionflatten(short[] self) Flatten an array.static Collection<?>Flatten an Iterable.static <T> Collection<T>Flatten an Iterable.static CollectionFlatten an array.static Collection<?>flatten(Collection<?> self) Flatten a Collection.static List<?>Flatten a List.static Set<?>Flatten a Set.static SortedSet<?>Flatten a SortedSet.static <K,V> V Looks up an item in a Map for the given key and returns the corresponding value.Support the subscript operator with an IntRange for a boolean arraygetAt(boolean[] array, ObjectRange range) Support the subscript operator with an ObjectRange for a byte arraySupport the subscript operator with a range for a boolean arraygetAt(boolean[] array, Collection indices) Support the subscript operator with a collection for a boolean arraySupport the subscript operator with an IntRange for a byte arraygetAt(byte[] array, ObjectRange range) Support the subscript operator with an ObjectRange for a byte arraySupport the subscript operator with a range for a byte arraygetAt(byte[] array, Collection indices) Support the subscript operator with a collection for a byte arraySupport the subscript operator with an IntRange for a char arraygetAt(char[] array, ObjectRange range) Support the subscript operator with an ObjectRange for a char arraySupport the subscript operator with a range for a char arraygetAt(char[] array, Collection indices) Support the subscript operator with a collection for a char arraySupport the subscript operator with an IntRange for a double arraygetAt(double[] array, ObjectRange range) Support the subscript operator with an ObjectRange for a double arraySupport the subscript operator with a range for a double arraygetAt(double[] array, Collection indices) Support the subscript operator with a collection for a double arraySupport the subscript operator with an IntRange for a float arraygetAt(float[] array, ObjectRange range) Support the subscript operator with an ObjectRange for a float arraySupport the subscript operator with a range for a float arraygetAt(float[] array, Collection indices) Support the subscript operator with a collection for a float arraySupport the subscript operator with an IntRange for an int arraygetAt(int[] array, ObjectRange range) Support the subscript operator with an ObjectRange for an int arraySupport the subscript operator with a range for an int arraygetAt(int[] array, Collection indices) Support the subscript operator with a collection for an int arraySupport the subscript operator with an IntRange for a long arraygetAt(long[] array, ObjectRange range) Support the subscript operator with an ObjectRange for a long arraySupport the subscript operator with a range for a long arraygetAt(long[] array, Collection indices) Support the subscript operator with a collection for a long arraySupport the subscript operator with an IntRange for a short arraygetAt(short[] array, ObjectRange range) Support the subscript operator with an ObjectRange for a short arraySupport the subscript operator with a range for a short arraygetAt(short[] array, Collection indices) Support the subscript operator with a collection for a short arraystatic <T> List<T>getAt(ListWithDefault<T> self, EmptyRange range) Support the range subscript operator for an eager or lazy List.static <T> List<T>getAt(ListWithDefault<T> self, Range range) Support the range subscript operator for an eager or lazy List.static <T> List<T>getAt(ListWithDefault<T> self, Collection indices) Select a List of items from an eager or lazy List using a Collection to identify the indices to be selected.static <T> TSupport the subscript operator for an Iterable.static ObjectAllows the subscript operator to be used to lookup dynamic property values.static booleanSupport the subscript operator for a Bitsetstatic BitSetSupport retrieving a subset of a BitSet using a Rangestatic ListgetAt(Collection coll, String property) Support the subscript operator for Collection.static <T> TSupport the subscript operator for an Iterator.static <T> TSupport the subscript operator for a List.static <T> List<T>getAt(List<T> self, EmptyRange range) Support the range subscript operator for a List.static <T> List<T>Support the range subscript operator for a List.static <T> TSupport subscript operator for list access.static <T> List<T>getAt(List<T> self, Collection indices) Select a List of items from a List using a Collection to identify the indices to be selected.static <K,V> V Support the subscript operator for a Map.static <T> List<T>getAt(T[] array, EmptyRange range) static <T> List<T>static <T> List<T>getAt(T[] array, ObjectRange range) static <T> List<T>Support the range subscript operator for an Arraystatic <T> List<T>getAt(T[] self, Collection indices) Select a List of items from an array using a Collection to identify the indices to be selected.static GroovydocgetGroovydoc(AnnotatedElement holder) Get runtime groovydocstatic IntRangegetIndices(boolean[] self) Returns indices of the boolean array.static IntRangegetIndices(byte[] self) Returns indices of the byte array.static IntRangegetIndices(char[] self) Returns indices of the char array.static IntRangegetIndices(double[] self) Returns indices of the double array.static IntRangegetIndices(float[] self) Returns indices of the float array.static IntRangegetIndices(int[] self) Returns indices of the int array.static IntRangegetIndices(long[] self) Returns indices of the long array.static IntRangegetIndices(short[] self) Returns indices of the short array.static IntRangegetIndices(Collection self) Returns indices of the collection.static <T> IntRangegetIndices(T[] self) Returns indices of the array.static URLgetLocation(Class self) Gets the url of the jar file/source file containing the specified classstatic MetaClassgetMetaClass(GroovyObject obj) Obtains a MetaClass for an object either from the registry or in the case of a GroovyObject from the object itself.static MetaClassAdds a "metaClass" property to all class objects so you can use the syntaxString.metaClass.myMethod = { println "foo" }static MetaClassgetMetaClass(Object obj) Obtains a MetaClass for an object either from the registry or in the case of a GroovyObject from the object itself.static List<PropertyValue>getMetaPropertyValues(Object self) Retrieves the list ofMetaPropertyobjects for 'self' and wraps it in a list ofPropertyValueobjects that additionally provide the value for each property of 'self'.static MapgetProperties(Object self) Convenience method that callsgetMetaPropertyValues(java.lang.Object)(self) and provides the data in form of simple key/value pairs, i.e.static ClassLoadergetRootLoader(ClassLoader self) Iterates through the classloader parents until it finds a loader with a class named "org.codehaus.groovy.tools.RootLoader".protected static ListgetSubList(List self, List splice) Deprecated.static CollectionIterates over the collection of items which this Object represents and returns each item that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.static CollectionIterates over the collection of items which this Object represents and returns each item that matches the given filter - calling theisCase(java.lang.Object, java.lang.Object)static <T> Collection<T>grep(Collection<T> self) Iterates over the collection returning each element that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.static <T> Collection<T>grep(Collection<T> self, Object filter) Iterates over the collection of items and returns each item that matches the given filter - calling theisCase(java.lang.Object, java.lang.Object)static <T> List<T>Iterates over the collection returning each element that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.static <T> List<T>Iterates over the collection of items and returns each item that matches the given filter - calling theisCase(java.lang.Object, java.lang.Object)static <T> Set<T>Iterates over the collection returning each element that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.static <T> Set<T>Iterates over the collection of items and returns each item that matches the given filter - calling theisCase(java.lang.Object, java.lang.Object)static <T> Collection<T>grep(T[] self) Iterates over the array returning each element that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.static <T> Collection<T>Iterates over the array of items and returns a collection of items that match the given filter - calling theisCase(java.lang.Object, java.lang.Object)protected static <K,T> void groupAnswer(Map<K, List<T>> answer, T element, K value) Groups the current element according to the valueSorts all Iterable members into groups determined by the supplied mapping closure.static MapSorts all Iterable members into (sub)groups determined by the supplied mapping closures.static MapSorts all Iterable members into (sub)groups determined by the supplied mapping closures.static MapSorts all array members into (sub)groups determined by the supplied mapping closures as per the Iterable variant of this method.static MapSorts all array members into (sub)groups determined by the supplied mapping closures as per the list variant of this method.Groups the members of a map into sub maps determined by the supplied mapping closure.Groups the members of a map into sub maps determined by the supplied mapping closures.Groups the members of a map into sub maps determined by the supplied mapping closures.Sorts all array members into groups determined by the supplied mapping closure.groupEntriesBy(Map<K, V> self, Closure<G> closure) Groups all map entries into groups determined by the supplied mapping closure.static MetaPropertyhasProperty(Object self, String name) Returns true of the implementing MetaClass has a property of the given namestatic <T> TReturns the first item from the Iterable.static <T> TReturns the first item from the List.static <T> Thead(T[] self) Returns the first item from the Object array.static <T,U> T Allows the closure to be called for the object reference self.static BooleanLogical implication of two boolean operatorsindexed(double[] self) Zips a double[] with indices in (index, value) order starting from index 0.indexed(double[] self, int offset) Zips a double[] with indices in (index, value) order.indexed(int[] self) Zips an int[] with indices in (index, value) order starting from index 0.indexed(int[] self, int offset) Zips an int[] with indices in (index, value) order.indexed(long[] self) Zips a long[] with indices in (index, value) order starting from index 0.indexed(long[] self, int offset) Zips a long[] with indices in (index, value) order.Zips an Iterable with indices in (index, value) order.Zips an Iterable with indices in (index, value) order.Zips an iterator with indices in (index, value) order.Zips an iterator with indices in (index, value) order.static <T> Collection<T>Returns the items from the Iterable excluding the last item.static <T> Iterator<T>Returns an Iterator containing all the items from this iterator except the last one.static <T> List<T>Returns the items from the List excluding the last item.static <T> SortedSet<T>Returns the items from the SortedSet excluding the last item.static <T> T[]init(T[] self) Returns the items from the Object array excluding the last item.Calculates the init values of this Iterable: the first value will be this list of all items from the iterable and the final one will be an empty list, with the intervening values the results of successive applications of init on the items.static <E,T, V extends T> 
 TIterates through the given array as with inject(Object[],initialValue,closure), but using the first element of the array as the initialValue, and then iterating the remaining elements of the array.static <E,T, U extends T, V extends T> 
 TIterates through the given array, passing in the initial value to the closure along with the first item.static <T,V extends T> 
 TIterates through the given Object, passing in the first value to the closure along with the first item.static <T,U extends T, V extends T> 
 TIterates through the given Object, passing in the initial value to the closure along with the first item.static <E,T, U extends T, V extends T> 
 Tinject(Collection<E> self, U initialValue, Closure<V> closure) Iterates through the given Collection, passing in the initial value to the 2-arg closure along with the first item.static <T,V extends T> 
 Tinject(Collection<T> self, Closure<V> closure) Performs the same function as the version of inject that takes an initial value, but uses the head of the Collection as the initial value, and iterates over the tail.static <E,T, U extends T, V extends T> 
 TIterates through the given Iterator, passing in the initial value to the closure along with the first item.static <K,V, T, U extends T, W extends T> 
 TIterates through the given Map, passing in the initial value to the 2-arg Closure along with the first item (or 3-arg Closure along with the first key and value).static StringInspects returns the String that matches what would be typed into a terminal to create this object.static NumberInteger Divide two Characters.static NumberInteger Divide a Character by a Number.static NumberInteger Divide a Number by a Character.static NumberInteger Divide two Numbers.static <T> Collection<T>Create a Collection composed of the intersection of both iterables.static <T> Collection<T>Create a Collection composed of the intersection of both iterables.static <T> Collection<T>intersect(Iterable<T> left, Iterable<T> right, Comparator<? super T> comparator) Create a Collection composed of the intersection of both iterables.static <T> Collection<T>intersect(Collection<T> left, Collection<T> right) Create a Collection composed of the intersection of both collections.static <T> Collection<T>intersect(Collection<T> left, Collection<T> right, Comparator<? super T> comparator) Create a Collection composed of the intersection of both collections.static <T> List<T>Create a List composed of the intersection of a List and an Iterable.static <T> List<T>intersect(List<T> left, Iterable<T> right, Comparator<? super T> comparator) Create a List composed of the intersection of a List and an Iterable.static <K,V> Map<K, V> Create a Map composed of the intersection of both maps.static <T> Set<T>Create a Set composed of the intersection of a Set and an Iterable.static <T> Set<T>intersect(Set<T> left, Iterable<T> right, Comparator<? super T> comparator) Create a Set composed of the intersection of a Set and an Iterable.static <T> SortedSet<T>Create a SortedSet composed of the intersection of a SortedSet and an Iterable.static <T> SortedSet<T>intersect(SortedSet<T> left, Iterable<T> right, Comparator<? super T> comparator) Create a SortedSet composed of the intersection of a SortedSet and an Iterable.static ObjectinvokeMethod(Object object, String method, Object arguments) Provide a dynamic method invocation method which can be overloaded in classes to implement dynamic proxies easily.static booleanIdentity check.static BooleanisAtLeast(BigDecimal left, String right) Compare a BigDecimal to a String representing a number.static BooleanisAtLeast(BigDecimal left, BigDecimal right) Compare a BigDecimal to another.static booleanSpecial 'Case' implementation for Class, which allows testing whether some switch value is assignable from the given case class.static booleanSpecial 'case' implementation for all numbers, which delegates to thecompareTo()method for comparing numbers of different types.static booleanMethod for overloading the behavior of the 'case' method in switch statements.static booleanisCase(Collection caseValue, Object switchValue) 'Case' implementation for collections which tests if the 'switch' operand is contained in any of the 'case' values.static boolean'Case' implementation for maps which tests the groovy truth value obtained using the 'switch' operand as key.static booleanDetermines if a character is a digit.static booleanCheck whether anIterablehas elementsstatic booleanDetermines if a character is a letter.static booleanisLetterOrDigit(Character self) Determines if a character is a letter or digit.static booleanisLowerCase(Character self) Determine if a Character is lowercase.static booleanstatic booleanstatic booleanstatic booleanstatic booleanisNotCase(Collection<?> caseValue, Object switchValue) static booleanstatic booleanisUpperCase(Character self) Determine if a Character is uppercase.static booleanisWhitespace(Character self) Determines if a character is a whitespace character.static IteratorAttempts to create an Iterator for the given object by first converting it to a Collection.static <T> Iterator<T>iterator(Enumeration<T> enumeration) Allows an Enumeration to behave like an Iterator.static <T> Iterator<T>An identity function for iterators, supporting 'duck-typing' when trying to get an iterator for each object within a collection, some of which may already be iterators.static <T> Iterator<T>iterator(T[] a) Attempts to create an Iterator for the given object by first converting it to a Collection.static StringConcatenates the string representation of each item in this array, with the given String as a separator between each item.static StringConcatenates the string representation of each item in this array, with the given String as a separator between each item.static StringConcatenates the string representation of each item in this array, with the given String as a separator between each item.static StringConcatenates the string representation of each item in this array, with the given String as a separator between each item.static StringConcatenates the string representation of each item in this array, with the given String as a separator between each item.static StringConcatenates the string representation of each item in this array, with the given String as a separator between each item.static StringConcatenates the string representation of each item in this array, with the given String as a separator between each item.static StringConcatenates the string representation of each item in this array, with the given String as a separator between each item.static StringConcatenates thetoString()representation of each item in this Iterable, with the given String as a separator between each item.static StringConcatenates thetoString()representation of each item from the iterator, with the given String as a separator between each item.static <T> StringConcatenates thetoString()representation of each item in this array, with the given String as a separator between each item.static <T> TReturns the last item from the Iterable.static <T> TAn optimized version oflast(List).static <T> TReturns the last item from the List.static <T> Tlast(T[] self) Returns the last item from the array.static NumberImplementation of the left shift operator for integral types.static <T> Collection<T>leftShift(Collection<T> self, T value) Overloads the left shift operator to provide an easy way to append objects to a Collection.static <T> BlockingQueue<T>leftShift(BlockingQueue<T> self, T value) Overloads the left shift operator to provide an easy way to append objects to a BlockingQueue.static <T> List<T>Overloads the left shift operator to provide an easy way to append objects to a List.static <K,V> Map<K, V> Overloads the left shift operator to provide an easy way to append Map.Entry values to a Map.static <K,V> Map<K, V> Overloads the left shift operator to provide an easy way to put one maps entries into another map.static <T> Set<T>Overloads the left shift operator to provide an easy way to append objects to a Set.static <T> SortedSet<T>Overloads the left shift operator to provide an easy way to append objects to a SortedSet.static doublemax(double[] self) Adds max() method to double arrays.static intmax(int[] self) Adds max() method to int arrays.static longmax(long[] self) Adds max() method to long arrays.static <T> TAdds max() method to Iterable objects.static <T> TSelects the item in the iterable which when passed as a parameter to the supplied closure returns the maximum value.static <T> Tmax(Iterable<T> self, Comparator<? super T> comparator) Selects the maximum value found in the Iterable using the given comparator.static <T> TAdds max() method to Iterator objects.static <T> TSelects the maximum value found from the Iterator using the closure to determine the correct ordering.static <T> Tmax(Iterator<T> self, Comparator<? super T> comparator) Selects the maximum value found from the Iterator using the given comparator.static <K,V> Map.Entry<K, V> Selects an entry in the map having the maximum calculated value as determined by the supplied closure.static <T> Tmax(T[] self) Adds max() method to Object arrays.static <T> TSelects the maximum value found from the Object array using the closure to determine the correct ordering.static <T> Tmax(T[] self, Comparator<? super T> comparator) Selects the maximum value found from the Object array using the given comparator.static MetaClassSets/updates the metaclass for a given class to a closure.static MetaClassSets/updates the metaclass for a given object to a closure.static doublemin(double[] self) Adds min() method to double arrays.static intmin(int[] self) Adds min() method to int arrays.static longmin(long[] self) Adds min() method to long arrays.static <T> TAdds min() method to Collection objects.static <T> TSelects the item in the iterable which when passed as a parameter to the supplied closure returns the minimum value.static <T> Tmin(Iterable<T> self, Comparator<? super T> comparator) Selects the minimum value found in the Iterable using the given comparator.static <T> TAdds min() method to Iterator objects.static <T> TSelects the minimum value found from the Iterator using the closure to determine the correct ordering.static <T> Tmin(Iterator<T> self, Comparator<? super T> comparator) Selects the minimum value found from the Iterator using the given comparator.static <K,V> Map.Entry<K, V> Selects an entry in the map having the minimum calculated value as determined by the supplied closure.static <T> Tmin(T[] self) Adds min() method to Object arrays.static <T> TSelects the minimum value found from the Object array using the closure to determine the correct ordering.static <T> Tmin(T[] self, Comparator<? super T> comparator) Selects the minimum value found from the Object array using the given comparator.static NumberSubtract one Character from another.static NumberSubtract a Number from a Character.static <T> Collection<T>Create a new Collection composed of the elements of the first Iterable minus every occurrence of elements of the given Iterable.static <T> Collection<T>Create a new Collection composed of the elements of the first Iterable minus every matching occurrence as determined by the condition closure of elements of the given Iterable.static <T> Collection<T>minus(Iterable<T> self, Iterable<?> removeMe, Comparator<? super T> comparator) Create a new Collection composed of the elements of the first Iterable minus every matching occurrence as determined by the condition comparator of elements of the given Iterable.static <T> Collection<T>Create a new Collection composed of the elements of the first Iterable minus every occurrence of the given element to remove.static NumberSubtract a Character from a Number.static <T> Collection<T>minus(Collection<T> self, Collection<?> removeMe) Create a new Collection composed of the elements of the first Collection minus every occurrence of elements of the given Collection.static <T> List<T>Create a new List composed of the elements of the first List minus every occurrence of elements of the given Iterable.static <T> List<T>Create a new List composed of the elements of the first List minus every occurrence of the given element to remove.static <T> List<T>minus(List<T> self, Collection<?> removeMe) Create a List composed of the elements of the first list minus every occurrence of elements of the given Collection.static <K,V> Map<K, V> Create a Map composed of the entries of the first map minus the entries of the given map.static <T> Set<T>Create a Set composed of the elements of the first Set minus the elements from the given Iterable.static <T> Set<T>Create a Set composed of the elements of the first Set minus the given element.static <T> Set<T>minus(Set<T> self, Collection<?> removeMe) Create a Set composed of the elements of the first Set minus the elements of the given Collection.static <T> SortedSet<T>Create a SortedSet composed of the elements of the first SortedSet minus the elements of the given Iterable.static <T> SortedSet<T>Create a SortedSet composed of the elements of the first SortedSet minus the given element.static <T> SortedSet<T>minus(SortedSet<T> self, Collection<?> removeMe) Create a SortedSet composed of the elements of the first SortedSet minus the elements of the given Collection.static <T> T[]Create a new array composed of the elements of the first array minus the elements of the given Iterable.static <T> T[]Create a new array composed of the elements of the given array minus every occurrence the given object.static <T> T[]Create a new array composed of the elements of the first array minus the elements of the given array.static voidExtend class globally with category methods.static voidExtend class globally with category methods.static voidExtend object with category methods.static voidExtend class globally with category methods.static voidExtend class globally with category methods.static voidExtend class globally with category methods.static NumberPerforms a division modulus operation.static NumberMultiply two Characters.static NumberMultiply a Character by a Number.static <T> Collection<T>Create a Collection composed of the elements of this Iterable, repeated a certain number of times.static NumberMultiply a Number by a Character.static Numbermultiply(BigDecimal left, Double right) Multiply a BigDecimal and a Double.static Numbermultiply(BigDecimal left, BigInteger right) Multiply a BigDecimal and a BigInteger.static <T> List<T>Create a List composed of the elements of this Iterable, repeated a certain number of times.static <T> TnewInstance(Class<T> c) Convenience method to dynamically create a new instance of this class.static <T> TnewInstance(Class<T> c, Object[] args) Helper to construct a new instance from the given arguments.static CharacterIncrement a Character by one.static NumberIncrement a Number by one.static intnumberAwareCompareTo(Comparable self, Comparable other) Provides a method that compares two comparables using Groovy's default number aware comparator.static BooleanLogical disjunction of two boolean operatorsstatic NumberBitwise OR together two numbers.static BitSetBitwise OR together two BitSets.permutations(Iterable<T> self) Finds all permutations of an iterable.static <T,V> List<V> permutations(Iterable<T> self, Closure<V> function) Finds all permutations of an iterable, applies a function to each permutation and collects the result into a list.static NumberAdd one Character to another.static NumberAdd a Character and a Number.static <T> Collection<T>Create a Collection as a union of two iterables.static <T> Collection<T>Create a collection as a union of an Iterable and an Object.static NumberAdd a Number and a Character.static <T> Collection<T>plus(Collection<T> left, Iterable<T> right) Create a Collection as a union of a Collection and an Iterable.static <T> Collection<T>plus(Collection<T> left, Collection<T> right) Create a Collection as a union of two collections.static <T> Collection<T>plus(Collection<T> left, T right) Create a collection as a union of a Collection and an Object.static <T> List<T>Creates a new List by inserting all the elements in the given Iterable to the elements from this List at the specified index.static <T> List<T>Creates a new List by inserting all the elements in the given additions List to the elements from the original List at the specified index.static <T> List<T>Creates a new List by inserting all the elements in the specified array to the elements from the original List at the specified index.static <T> List<T>Create a List as a union of a List and an Iterable.static <T> List<T>plus(List<T> left, Collection<T> right) Create a List as a union of a List and a Collection.static <T> List<T>Create a List as a union of a List and an Object.static <K,V> Map<K, V> plus(Map<K, V> self, Collection<? extends Map.Entry<? extends K, ? extends V>> entries) Returns a newMapcontaining all entries fromselfandentries, giving precedence toentries.static <K,V> Map<K, V> Returns a newMapcontaining all entries fromleftandright, giving precedence toright.static StringAppends a GString to the literal of the Map instance.static StringAppends a String to the literal of the Map instance.static <T> Set<T>Create a Set as a union of a Set and an Iterable.static <T> Set<T>plus(Set<T> left, Collection<T> right) Create a Set as a union of a Set and a Collection.static <T> Set<T>Create a Set as a union of a Set and an Object.static <T> SortedSet<T>Create a SortedSet as a union of a SortedSet and an Iterable.static <T> SortedSet<T>plus(SortedSet<T> left, Collection<T> right) Create a SortedSet as a union of a SortedSet and a Collection.static <T> SortedSet<T>Create a SortedSet as a union of a SortedSet and an Object.static <T> T[]Create an array containing elements from an original array plus those from an Iterable.static <T> T[]Create an array containing elements from an original array plus an additional appended element.static <T> T[]Create an array as a union of two arrays.static <T> T[]plus(T[] left, Collection<?> right) Create an array containing elements from an original array plus those from a Collection.static <T> TRemoves the initial item from the List.static NumberPower of an integer to an integer certain exponent.static NumberPower of a long to an integer certain exponent.static NumberPower of a Number to a certain exponent.static Numberpower(BigDecimal self, Integer exponent) Power of a BigDecimal to an integer certain exponent.static Numberpower(BigInteger self, Integer exponent) Power of a BigInteger to an integer certain exponent.static BigIntegerpower(BigInteger self, BigInteger exponent) Power of a BigInteger to a BigInteger certain exponent.static CharacterDecrement a Character by one.static NumberDecrement a Number by one.protected static ObjectprimitiveArrayGet(Object self, int idx) Implements the getAt(int) method for primitive type arrays.protected static ListprimitiveArrayGet(Object self, Range range) Implements the getAt(Range) method for primitive type arrays.protected static ListprimitiveArrayGet(Object self, Collection indices) Implements the getAt(Collection) method for primitive type arrays.protected static ObjectprimitiveArrayPut(Object self, int idx, Object newValue) Implements the setAt(int idx) method for primitive type arrays.static voidPrint a value to the standard output stream.static voidprint(PrintStream self, Object value) Print a value formatted Groovy style to the print stream.static voidprint(PrintWriter self, Object value) Print a value formatted Groovy style to the print writer.static voidprint(Object self, PrintWriter out) Print to a console in interactive format.static voidPrint a value formatted Groovy style to self if it is a Writer, otherwise to the standard output stream.static voidPrintf a value to the standard output stream using a format string.static voidPrintf 0 or more values to the standard output stream using a format string.static voidPrints a formatted string using the specified format string and arguments.static voidPrintf to the standard output stream.static voidPrint a linebreak to the standard output stream.static voidPrint a value (followed by a newline) to the standard output stream.static voidprintln(PrintStream self, Object value) Print a value formatted Groovy style (followed by a newline) to the print stream.static voidprintln(PrintWriter self, Object value) Print a value formatted Groovy style (followed by a newline) to the print writer.static voidPrint a linebreak to the standard output stream.static voidprintln(Object self, PrintWriter out) Print to a console in interactive format.static voidPrint a value formatted Groovy style (followed by a newline) to self if it is a Writer, otherwise to the standard output stream.static <T> booleanPrepends an item to the start of the List.static <K,V> Map<K, V> putAll(Map<K, V> self, Collection<? extends Map.Entry<? extends K, ? extends V>> entries) Provides an easy way to append multiple Map.Entry values to a Map.static voidAllows the subscript operator to be used to set dynamically named property values.static voidSupport subscript-style assignment for a BitSet.static voidSupport assigning a range of values with a single assignment statement.static <T> voidA helper method to allow lists to work with subscript operators.static <T> voidSupport subscript operator for list modification.static voidputAt(List self, EmptyRange range, Object value) A helper method to allow lists to work with subscript operators.static voidputAt(List self, EmptyRange range, Collection value) A helper method to allow lists to work with subscript operators.static voidList subscript assignment operator when given a range as the index.static voidputAt(List self, IntRange range, Collection col) List subscript assignment operator when given a range as the index and the assignment operand is a collection.static voidA helper method to allow lists to work with subscript operators.static voidputAt(List self, List splice, Collection values) A helper method to allow lists to work with subscript operators.static voidDeprecated.use #putAt(List, List, Collection), retained for binary compatibilitystatic <K,V> V A helper method to allow maps to work with subscript operatorsstatic <T> booleanremoveAll(Collection<T> self, Closure condition) Modifies this collection by removing the elements that are matched according to the specified closure condition.static booleanremoveAll(Collection self, Object[] items) Modifies this collection by removing its elements that are contained within the specified object array.static <K,V> boolean Modifies this map by removing the elements that are matched according to the specified closure condition.static <E> EModifies this list by removing the element at the specified position in this list.static <E> booleanremoveElement(Collection<E> self, Object o) Modifies this collection by removing a single instance of the specified element from this collection, if it is present.static <T> TremoveLast(List<T> self) Removes the last item from the List.static List<MetaMethod>respondsTo(Object self, String name) Returns an object satisfying Groovy truth if the implementing MetaClass responds to a method with the given name regardless of the arguments.static List<MetaMethod>respondsTo(Object self, String name, Object[] argTypes) Returns an object satisfying Groovy truth if the implementing MetaClass responds to a method with the given name and arguments types.static <T> booleanretainAll(Collection<T> self, Closure condition) Modifies this collection so that it retains only its elements that are matched according to the specified closure condition.static booleanretainAll(Collection self, Object[] items) Modifies this collection so that it retains only its elements that are contained in the specified array.static <K,V> boolean Modifies this map so that it retains only its elements that are matched according to the specified closure condition.static <T> Iterator<T>Reverses the iterator.static <T> List<T>Creates a new List with the identical contents to this list but in reverse order.static <T> List<T>Reverses the elements in a list.static <T> T[]reverse(T[] self) Creates a new array containing items which are the same as this array but in reverse order.static <T> T[]reverse(T[] self, boolean mutate) Reverse the items in an array.static <T> List<T>reverseEach(List<T> self, Closure closure) Iterate over each element of the list in the reverse order.static <K,V> Map<K, V> reverseEach(Map<K, V> self, Closure<?> closure) Allows a Map to be iterated through in reverse order using a closure.static <T> NavigableSet<T>reverseEach(NavigableSet<T> self, Closure closure) Iterate over each element of the set in reverse order.static <T> T[]reverseEach(T[] self, Closure closure) Iterate over each element of the array in the reverse order.static NumberrightShift(Number self, Number operand) Implementation of the right shift operator for integral types.static NumberrightShiftUnsigned(Number self, Number operand) Implementation of the right shift (unsigned) operator for integral types.static longRound the valuestatic doubleRound the valuestatic intRound the valuestatic floatRound the valuestatic BigDecimalround(BigDecimal number) Round the valuestatic BigDecimalround(BigDecimal number, int precision) Round the valuestatic TimerTaskAllows a simple syntax for using timers.static voidsetMetaClass(GroovyObject self, MetaClass metaClass) Sets the metaclass for aGroovyObject.static voidsetMetaClass(Class self, MetaClass metaClass) Sets the metaclass for a given class.static voidsetMetaClass(Object self, MetaClass metaClass) Sets the metaclass for an object.static voidRandomly reorders the elements of the specified list.static voidRandomly reorders the elements of the specified list using the specified random instance as the source of randomness.static <T> voidshuffle(T[] self) Randomly reorders the elements of the specified array.static <T> voidRandomly reorders the elements of the specified array using the specified random instance as the source of randomness.static <T> List<T>Creates a new list containing the elements of the specified list but in a random order.static <T> List<T>Creates a new list containing the elements of the specified list but in a random order using the specified random instance as the source of randomness.static <T> T[]shuffled(T[] self) Creates a new array containing the elements of the specified array but in a random order.static <T> T[]Creates a new array containing the elements of the specified array but in a random order using the specified random instance as the source of randomness.static intsize(boolean[] array) Allows arrays to behave similar to collections.static intsize(byte[] array) Allows arrays to behave similar to collections.static intsize(char[] array) Allows arrays to behave similar to collections.static intsize(double[] array) Allows arrays to behave similar to collections.static intsize(float[] array) Allows arrays to behave similar to collections.static intsize(int[] array) Allows arrays to behave similar to collections.static intsize(long[] array) Allows arrays to behave similar to collections.static intsize(short[] array) Allows arrays to behave similar to collections.static intProvide the standard Groovysize()method forIterable.static intProvide the standard Groovysize()method for an array.static intProvide the standard Groovysize()method forIterator.static <T> List<T>Sorts the Collection.static <T> List<T>Sorts the Iterable.static <T> List<T>Sorts this Iterable using the given Closure to determine the correct ordering.static <T> List<T>sort(Iterable<T> self, boolean mutate, Comparator<? super T> comparator) Sorts the Iterable using the given Comparator.static <T> List<T>Sorts this Iterable using the given Closure to determine the correct ordering.static <T> Iterator<T>Sorts the given iterator items into a sorted iterator.static <T> Iterator<T>Sorts the given iterator items into a sorted iterator using the Closure to determine the correct ordering.static <T> Iterator<T>sort(Iterator<T> self, Comparator<? super T> comparator) Sorts the given iterator items into a sorted iterator using the comparator.static <K,V> Map<K, V> Sorts the elements from the given map into a new ordered Map using the natural ordering of the keys to determine the ordering.static <K,V> Map<K, V> Sorts the elements from the given map into a new ordered map using the closure as a comparator to determine the ordering.static <K,V> Map<K, V> sort(Map<K, V> self, Comparator<? super K> comparator) Sorts the elements from the given map into a new ordered Map using the specified key comparator to determine the ordering.static <K,V> SortedMap<K, V> Avoids doing unnecessary work when sorting an already sorted map (i.e.static <T> SortedSet<T>Avoids doing unnecessary work when sorting an already sorted set (i.e.static <T> T[]sort(T[] self) Modifies this array so that its elements are in sorted order.static <T> T[]sort(T[] self, boolean mutate) Sorts the given array into sorted order.static <T> T[]Modifies this array so that its elements are in sorted order using the Closure to determine the correct ordering.static <T> T[]sort(T[] self, boolean mutate, Comparator<? super T> comparator) Modifies this array so that its elements are in sorted order as determined by the given comparator.static <T> T[]Sorts the elements from this array into a newly created array using the Closure to determine the correct ordering.static <T> T[]sort(T[] self, Comparator<? super T> comparator) Sorts the given array into sorted order using the given comparator.static CollectionSplits all items into two lists based on the closure condition.static <T> Collection<Collection<T>>split(Collection<T> self, Closure closure) Splits all items into two collections based on the closure condition.Splits all items into two collections based on the closure condition.Splits all items into two collections based on the closure condition.static <T> Collection<Collection<T>>Splits all items into two collections based on the closure condition.static SpreadMapSynonym fortoSpreadMap(java.util.Map).static StringReturns a formatted string using the specified format string and arguments.static StringSprintf to a string.static voidIterates from this number up to the given number using a step increment.static <K,V> Map<K, V> subMap(Map<K, V> map, Collection<K> keys) Creates a sub-Map containing the given keys.static <K,V> Map<K, V> Creates a sub-Map containing the given keys.subsequences(List<T> self) Finds all non-null subsequences of a list.static bytesum(byte[] self) Sums the items in an array.static bytesum(byte[] self, byte initialValue) Sums the items in an array, adding the result to some initial value.static charsum(char[] self) Sums the items in an array.static charsum(char[] self, char initialValue) Sums the items in an array, adding the result to some initial value.static doublesum(double[] self) Sums the items in an array.static doublesum(double[] self, double initialValue) Sums the items in an array, adding the result to some initial value.static floatsum(float[] self) Sums the items in an array.static floatsum(float[] self, float initialValue) Sums the items in an array, adding the result to some initial value.static intsum(int[] self) Sums the items in an array.static intsum(int[] self, int initialValue) Sums the items in an array, adding the result to some initial value.static longsum(long[] self) Sums the items in an array.static longsum(long[] self, long initialValue) Sums the items in an array, adding the result to some initial value.static shortsum(short[] self) Sums the items in an array.static shortsum(short[] self, short initialValue) Sums the items in an array, adding the result to some initial value.static ObjectSums the items in an Iterable.static ObjectSums the items in an Iterable, adding the result to some initial value.static <T> ObjectSums the result of applying a closure to each item of an Iterable.static <T> ObjectSums the result of applying a closure to each item of an Iterable to some initial value.static ObjectSums the items in an array.static ObjectSums the items in an array, adding the result to some initial value.static ObjectSums the items from an Iterator, adding the result to some initial value.static ObjectSums the items from an Iterator.static <T> ObjectSums the result of applying a closure to each item returned from an iterator.static <T> ObjectSums the result of applying a closure to each item of an Iterator to some initial value.static <T> ObjectSums the result of applying a closure to each item of an array.static <T> ObjectSums the result of applying a closure to each item of an array to some initial value.static boolean[]swap(boolean[] self, int i, int j) Swaps two elements at the specified positions.static byte[]swap(byte[] self, int i, int j) Swaps two elements at the specified positions.static char[]swap(char[] self, int i, int j) Swaps two elements at the specified positions.static double[]swap(double[] self, int i, int j) Swaps two elements at the specified positions.static float[]swap(float[] self, int i, int j) Swaps two elements at the specified positions.static int[]swap(int[] self, int i, int j) Swaps two elements at the specified positions.static long[]swap(long[] self, int i, int j) Swaps two elements at the specified positions.static short[]swap(short[] self, int i, int j) Swaps two elements at the specified positions.static <T> List<T>Swaps two elements at the specified positions.static <T> T[]swap(T[] self, int i, int j) Swaps two elements at the specified positions.static <T> Collection<T>Returns the items from the Iterable excluding the first item.static <T> Iterator<T>Returns the original iterator after throwing away the first element.static <T> List<T>Returns the items from the List excluding the first item.static <T> SortedSet<T>Returns the items from the SortedSet excluding the first item.static <T> T[]tail(T[] self) Returns the items from the array excluding the first item.Calculates the tail values of this Iterable: the first value will be this list of all items from the iterable and the final one will be an empty list, with the intervening values the results of successive applications of tail on the items.static <T> Collection<T>Returns the firstnumelements from the head of this Iterable.static <T> Iterator<T>Returns an iterator of up to the firstnumelements from this iterator.static <T> List<T>Returns the firstnumelements from the head of this List.static <K,V> Map<K, V> Returns a new map containing the firstnumelements from the head of this map.static <T> SortedSet<T>Returns the firstnumelements from the head of this SortedSet.static <T> T[]take(T[] self, int num) Returns the firstnumelements from the head of this array.static <T> Collection<T>Returns the lastnumelements from the tail of this Iterable.static <T> List<T>Returns the lastnumelements from the tail of this List.static <T> SortedSet<T>Returns the lastnumelements from the tail of this SortedSet.static <T> T[]takeRight(T[] self, int num) Returns the lastnumelements from the tail of this array.static <T> Collection<T>Returns a Collection containing the longest prefix of the elements from this Iterable where each element passed to the given closure evaluates to true.static <T> Iterator<T>Returns the longest prefix of elements in this iterator where each element passed to the given condition closure evaluates to true.static <T> List<T>Returns the longest prefix of this list where each element passed to the given closure condition evaluates to true.static <K,V> Map<K, V> Returns the longest prefix of this Map where each entry (or key/value pair) when passed to the given closure evaluates to true.static <T> SortedSet<T>Returns the longest prefix of this SortedSet where each element passed to the given closure condition evaluates to true.static <T> T[]Returns the longest prefix of this array where each element passed to the given closure evaluates to true.static <T,U> U Allows the closure to be called for the object reference self (similar towith) and always returns self.static voidExecutes the closure this many times, starting from zero.static StringtoArrayString(Object[] self) Returns the string representation of the given array.static BigDecimaltoBigDecimal(Number self) Transform a Number into a BigDecimalstatic BigIntegertoBigInteger(Number self) Transform this Number into a BigInteger.static BooleanIdentity conversion which returns Boolean.TRUE for a true Boolean and Boolean.FALSE for a false Boolean.static DoubleTransform a Number into a Doublestatic FloatTransform a Number into a Floatstatic IntegerTransform a Number into an IntegertoList(boolean[] array) Converts this array to a List of the same size, with each element added to the list.toList(byte[] array) Converts this array to a List of the same size, with each element added to the list.toList(char[] array) Converts this array to a List of the same size, with each element added to the list.toList(double[] array) Converts this array to a List of the same size, with each element added to the list.toList(float[] array) Converts this array to a List of the same size, with each element added to the list.toList(int[] array) Converts this array to a List of the same size, with each element added to the list.toList(long[] array) Converts this array to a List of the same size, with each element added to the list.toList(short[] array) Converts this array to a List of the same size, with each element added to the list.static <T> List<T>Convert an Iterable to a List.static <T> List<T>toList(Enumeration<T> self) Convert an enumeration to a List.static <T> List<T>Convert an iterator to a List.static <T> List<T>toList(T[] array) Allows conversion of arrays into a mutable List.static StringtoListString(Collection self) Returns the string representation of the given list.static StringtoListString(Collection self, int maxSize) Returns the string representation of the given list.static LongTransform a Number into a Longstatic chartoLowerCase(Character self) Converts the character to lowercase.static StringtoMapString(Map self) Returns the string representation of this map.static StringtoMapString(Map self, int maxSize) Returns the string representation of this map.toSet(boolean[] array) Converts this array to a Set, with each unique element added to the set.toSet(byte[] array) Converts this array to a Set, with each unique element added to the set.toSet(char[] array) Converts this array to a Set, with each unique element added to the set.toSet(double[] array) Converts this array to a Set, with each unique element added to the set.toSet(float[] array) Converts this array to a Set, with each unique element added to the set.toSet(int[] array) Converts this array to a Set, with each unique element added to the set.toSet(long[] array) Converts this array to a Set, with each unique element added to the set.toSet(short[] array) Converts this array to a Set, with each unique element added to the set.static <T> Set<T>Convert an Iterable to a Set.static <T> Set<T>toSet(Collection<T> self) Convert a Collection to a Set.static <T> Set<T>toSet(Enumeration<T> self) Convert an enumeration to a Set.static <T> Set<T>Convert an iterator to a Set.static <T> List<T>Sorts the Iterable.static <T> List<T>Sorts this Iterable using the given Closure to determine the correct ordering.static <T> List<T>toSorted(Iterable<T> self, Comparator<? super T> comparator) Sorts the Iterable using the given Comparator.static <T> Iterator<T>Sorts the Iterator.static <T> Iterator<T>Sorts the given iterator items into a sorted iterator using the Closure to determine the correct ordering.static <T> Iterator<T>toSorted(Iterator<T> self, Comparator<? super T> comparator) Sorts the given iterator items using the comparator.static <K,V> Map<K, V> Sorts the elements from the given map into a new ordered map using aNumberAwareComparatoron map entry values to determine the resulting order.static <K,V> Map<K, V> Sorts the elements from the given map into a new ordered map using the supplied Closure condition as a comparator to determine the ordering.static <K,V> Map<K, V> toSorted(Map<K, V> self, Comparator<Map.Entry<K, V>> comparator) Sorts the elements from the given map into a new ordered map using the supplied comparator to determine the ordering.static <K,V> Map<K, V> Avoids doing unnecessary work when sorting an already sorted mapstatic <T> Set<T>Avoids doing unnecessary work when sorting an already sorted setstatic <T> T[]toSorted(T[] self) Returns a sorted version of the given array using the supplied comparator.static <T> T[]Sorts the elements from this array into a newly created array using the Closure to determine the correct ordering.static <T> T[]toSorted(T[] self, Comparator<? super T> comparator) Returns a sorted version of the given array using the supplied comparator to determine the resulting order.static SpreadMaptoSpreadMap(Iterable self) Creates a spreadable map from this iterable.static SpreadMaptoSpreadMap(Object[] self) Creates a spreadable map from this array.static SpreadMaptoSpreadMap(List self) Creates a spreadable map from this list.static SpreadMaptoSpreadMap(Map self) Returns a newSpreadMapfrom this map.static StringtoString(boolean[] self) Returns the string representation of the given array.static StringtoString(byte[] self) Returns the string representation of the given array.static StringtoString(char[] self) Returns the string representation of the given array.static StringtoString(double[] self) Returns the string representation of the given array.static StringtoString(float[] self) Returns the string representation of the given array.static StringtoString(int[] self) Returns the string representation of the given array.static StringtoString(long[] self) Returns the string representation of the given array.static StringtoString(short[] self) Returns the string representation of the given array.static StringCreate a String representation of this object.static StringReturns the string representation of this array's contents.static StringtoString(AbstractCollection self) Returns the string representation of the given collection.static StringtoString(AbstractMap self) Returns the string representation of the given map.static <T> Collection<T>Returns a Collection containing the items from the Iterable but with duplicates removed using the natural ordering of the items to determine uniqueness.static <T> Collection<T>Returns a Collection containing the items from the Iterable but with duplicates removed.static <T> Collection<T>toUnique(Iterable<T> self, Comparator<? super T> comparator) Returns a Collection containing the items from the Iterable but with duplicates removed.static <T> Iterator<T>Returns an iterator equivalent to this iterator with all duplicated items removed by using the natural ordering of the items.static <T> Iterator<T>Returns an iterator equivalent to this iterator but with all duplicated items removed where duplicate (equal) items are deduced by calling the supplied Closure condition.static <T> Iterator<T>toUnique(Iterator<T> self, Comparator<? super T> comparator) Returns an iterator equivalent to this iterator with all duplicated items removed by using the supplied comparator.static <T> List<T>Returns a List containing the items from the List but with duplicates removed using the natural ordering of the items to determine uniqueness.static <T> List<T>Returns a List containing the items from the List but with duplicates removed.static <T> List<T>toUnique(List<T> self, Comparator<? super T> comparator) Returns a List containing the items from the List but with duplicates removed.static <T> T[]toUnique(T[] self) Returns a new Array containing the items from the original Array but with duplicates removed using the natural ordering of the items in the array.static <T> T[]Returns a new Array containing the items from the original Array but with duplicates removed with the supplied comparator determining which items are unique.static <T> T[]toUnique(T[] self, Comparator<? super T> comparator) Returns a new Array containing the items from the original Array but with duplicates removed with the supplied comparator determining which items are unique.static chartoUpperCase(Character self) Converts the character to uppercase.static double[][]transpose(double[][] self) A transpose method for 2D double arrays.static int[][]transpose(int[][] self) A transpose method for 2D int arrays.static long[][]transpose(long[][] self) A transpose method for 2D long arrays.static ListAdds GroovyCollections#transpose(List) as a method on lists.static doubleTruncate the valuestatic doubleTruncate the valuestatic floatTruncate the valuestatic floatTruncate the valuestatic BigDecimaltrunc(BigDecimal number) Truncate the valuestatic BigDecimaltrunc(BigDecimal number, int precision) Truncate the valuestatic NumberunaryMinus(Number left) Negates the number.static NumberReturns the number, effectively being a noop for numbers.static Object[]Create an Object array containing elements from an original array plus those from an Iterable.static Object[]Create an Object array containing elements from an original array plus an additional appended element.static Object[]Create an Object array as a union of two arrays.static Object[]union(Object[] left, Collection<?> right) Create an object array containing elements from an original array plus those from a Collection.static <T> Collection<T>unique(Collection<T> self) Modifies this collection to remove all duplicated items, using Groovy's default number-aware comparator.static <T> Collection<T>unique(Collection<T> self, boolean mutate) Remove all duplicates from a given Collection using Groovy's default number-aware comparator.static <T> Collection<T>unique(Collection<T> self, boolean mutate, Closure closure) A convenience method for making a collection unique using a Closure to determine duplicate (equal) items.static <T> Collection<T>unique(Collection<T> self, boolean mutate, Comparator<? super T> comparator) Remove all duplicates from a given Collection.static <T> Collection<T>unique(Collection<T> self, Closure closure) A convenience method for making a collection unique using a Closure to determine duplicate (equal) items.static <T> Collection<T>unique(Collection<T> self, Comparator<? super T> comparator) Remove all duplicates from a given Collection.static <T> Iterator<T>Returns an iterator equivalent to this iterator with all duplicated items removed by using Groovy's default number-aware comparator.static <T> Iterator<T>Returns an iterator equivalent to this iterator but with all duplicated items removed by using a Closure to determine duplicate (equal) items.static <T> Iterator<T>unique(Iterator<T> self, Comparator<? super T> comparator) Returns an iterator equivalent to this iterator with all duplicated items removed by using the supplied comparator.static <T> List<T>Modifies this List to remove all duplicated items, using Groovy's default number-aware comparator.static <T> List<T>Remove all duplicates from a given List using Groovy's default number-aware comparator.static <T> List<T>A convenience method for making a List unique using a Closure to determine duplicate (equal) items.static <T> List<T>unique(List<T> self, boolean mutate, Comparator<? super T> comparator) Remove all duplicates from a given List.static <T> List<T>A convenience method for making a List unique using a Closure to determine duplicate (equal) items.static <T> List<T>unique(List<T> self, Comparator<? super T> comparator) Remove all duplicates from a given List.static voidIterates from this number up to the given number, inclusive, incrementing by one each time.static voidIterates from this number up to the given number, inclusive, incrementing by one each time.static voidIterates from this number up to the given number, inclusive, incrementing by one each time.static voidIterates from this number up to the given number, inclusive, incrementing by one each time.static voidIterates from this number up to the given number, inclusive, incrementing by one each time.static voidIterates from this number up to the given number, inclusive, incrementing by one each time.static voidIterates from this number up to the given number, inclusive, incrementing by one each time.static voidupto(BigDecimal self, Number to, Closure closure) Iterates from this number up to the given number, inclusive, incrementing by one each time.static voidupto(BigInteger self, Number to, Closure closure) Iterates from this number up to the given number, inclusive, incrementing by one each time.static <T> TScoped use methodstatic ObjectAllows you to use a list of categories, specifying the list as varargs.static <T> TScoped use method with list of categories.static <T,U extends T, V extends T> 
 TAllows the closure to be called for the object reference self.static <T,U> T Allows the closure to be called for the object reference self.static <T> ListWithDefault<T>withDefault(List<T> self, Closure<T> init) An alias forwithLazyDefaultwhich decorates a list allowing it to grow when called with index values outside the normal list bounds.static <K,V> Map<K, V> withDefault(Map<K, V> self, boolean autoGrow, boolean autoShrink, Closure<V> init) Wraps a map using the decorator pattern with a wrapper that intercepts all calls toget(key)andput(key, value).static <K,V> Map<K, V> withDefault(Map<K, V> self, Closure<V> init) Wraps a map using the decorator pattern with a wrapper that intercepts all calls toget(key).static <T> List<T>withDefault$$bridge(List<T> self, Closure<T> init) Deprecated.static <T> ListWithDefault<T>withEagerDefault(List<T> self, Closure<T> init) Decorates a list allowing it to grow when called with a non-existent index value.static <T> List<T>withEagerDefault$$bridge(List<T> self, Closure<T> init) Deprecated.Zips an Iterable with indices in (value, index) order.Zips an Iterable with indices in (value, index) order.Zips an iterator with indices in (value, index) order.Zips an iterator with indices in (value, index) order.static <T> ListWithDefault<T>withLazyDefault(List<T> self, Closure<T> init) Decorates a list allowing it to grow when called with a non-existent index value.static <T> List<T>withLazyDefault$$bridge(List<T> self, Closure<T> init) Deprecated.static ObjectwithTraits(Object self, Class<?>... traits) Dynamically wraps an instance into something which implements the supplied trait classes.static BooleanExclusive disjunction of two boolean operatorsstatic NumberBitwise XOR together two Numbers.static BitSetBitwise XOR together two BitSets.Methods inherited from class org.codehaus.groovy.runtime.DefaultGroovyMethodsSupportcloneSimilarCollection, cloneSimilarMap, closeQuietly, closeWithWarning, createSimilarArray, createSimilarCollection, createSimilarCollection, createSimilarCollection, createSimilarList, createSimilarMap, createSimilarOrDefaultCollection, createSimilarQueue, createSimilarSet, normaliseIndex, sameType, subListBorders, subListBorders, subListRange, writeUTF16BomIfRequired, writeUTF16BomIfRequired, writeUTF16BomIfRequired, writeUTF16BomIfRequired
- 
Field Details- 
ADDITIONAL_CLASSES
- 
DGM_LIKE_CLASSES
 
- 
- 
Constructor Details- 
DefaultGroovyMethodspublic DefaultGroovyMethods()
 
- 
- 
Method Details- 
isIdentity check. Since == is overridden in Groovy with the meaning of equality we need some fallback to check for object identity. Invoke using the 'is' method, like so:def same = this.is(that)- Parameters:
- self- an object
- other- an object to compare identity with
- Returns:
- true if self and other are both references to the same instance, false otherwise
- Since:
- 1.0
 
- 
identitypublic static <T,U> T identity(U self, @DelegatesTo(value=Target.class,target="self",strategy=1) Closure<T> closure) Allows the closure to be called for the object reference self. Synonym for 'with()'.- Parameters:
- self- the object to have a closure act upon
- closure- the closure to call on the object
- Returns:
- result of calling the closure
- Since:
- 1.0
- See Also:
 
- 
withpublic static <T,U> T with(U self, @DelegatesTo(value=Target.class,target="self",strategy=1) Closure<T> closure) Allows the closure to be called for the object reference self.Any method invoked inside the closure will first be invoked on the self reference. For instance, the following method calls to the append() method are invoked on the StringBuilder instance: def b = new StringBuilder().with { append('foo') append('bar') return it } assert b.toString() == 'foobar'This is commonly used to simplify object creation, such as this example:def p = new Person().with { firstName = 'John' lastName = 'Doe' return it }The other typical usage, uses the self object while creating some value:def fullName = person.with{ "$firstName $lastName" }- Parameters:
- self- the object to have a closure act upon
- closure- the closure to call on the object
- Returns:
- result of calling the closure
- Since:
- 1.5.0
- See Also:
 
- 
withpublic static <T,U extends T, T withV extends T> (U self, boolean returning, @DelegatesTo(value=Target.class,target="self",strategy=1) Closure<T> closure) Allows the closure to be called for the object reference self. Any method invoked inside the closure will first be invoked on the self reference. For example, the following method calls to the append() method are invoked on the StringBuilder instance and then, because 'returning' is true, the self instance is returned:def b = new StringBuilder().with(true) { append('foo') append('bar') } assert b.toString() == 'foobar'The returning parameter is commonly set to true when using with to simplify object creation, such as this example:def p = new Person().with(true) { firstName = 'John' lastName = 'Doe' }Alternatively, 'tap' is an alias for 'with(true)', so that method can be used instead. The other main use case for with is when returning a value calculated using self as shown here:def fullName = person.with(false){ "$firstName $lastName" }Alternatively, 'with' is an alias for 'with(false)', so the boolean parameter can be omitted instead.- Parameters:
- self- the object to have a closure act upon
- returning- if true, return the self object; otherwise, the result of calling the closure
- closure- the closure to call on the object
- Returns:
- the self object or the result of calling the closure depending on 'returning'
- Since:
- 2.5.0
- See Also:
 
- 
tappublic static <T,U> U tap(U self, @DelegatesTo(value=Target.class,target="self",strategy=1) Closure<T> closure) Allows the closure to be called for the object reference self (similar towith) and always returns self.Any method invoked inside the closure will first be invoked on the self reference. For instance, the following method calls to the append() method are invoked on the StringBuilder instance: def b = new StringBuilder().tap { append('foo') append('bar') } assert b.toString() == 'foobar'This is commonly used to simplify object creation, such as this example:def p = new Person().tap { firstName = 'John' lastName = 'Doe' }- Parameters:
- self- the object to have a closure act upon
- closure- the closure to call on the object
- Returns:
- self
- Since:
- 2.5.0
- See Also:
 
- 
getAtAllows the subscript operator to be used to lookup dynamic property values.bean[somePropertyNameExpression]. The normal property notation of groovy is neater and more concise but only works with compile-time known property names.- Parameters:
- self- the object to act upon
- property- the property name of interest
- Returns:
- the property value
- Since:
- 1.0
 
- 
putAtAllows the subscript operator to be used to set dynamically named property values.bean[somePropertyNameExpression] = foo. The normal property notation of groovy is neater and more concise but only works with property names which are known at compile time.- Parameters:
- self- the object to act upon
- property- the name of the property to set
- newValue- the value to set
- Since:
- 1.0
 
- 
dumpGenerates a detailed dump string of an object showing its class, hashCode and all accessible fields.- Parameters:
- self- an object
- Returns:
- the dump representation
- Since:
- 1.0
 
- 
getMetaPropertyValuesRetrieves the list ofMetaPropertyobjects for 'self' and wraps it in a list ofPropertyValueobjects that additionally provide the value for each property of 'self'.- Parameters:
- self- the receiver object
- Returns:
- list of PropertyValueobjects
- Since:
- 1.0
- See Also:
 
- 
getPropertiesConvenience method that callsgetMetaPropertyValues(java.lang.Object)(self) and provides the data in form of simple key/value pairs, i.e. without type() information.- Parameters:
- self- the receiver object
- Returns:
- meta properties as Map of key/value pairs
- Since:
- 1.0
 
- 
useScoped use method- Parameters:
- self- any Object
- categoryClass- a category class to use
- closure- the closure to invoke with the category in place
- Returns:
- the value returned from the closure
- Since:
- 1.0
 
- 
mixinExtend object with category methods. All methods for given class and all super classes will be added to the object.- Parameters:
- self- any Class
- categoryClasses- a category classes to use
- Since:
- 1.6.0
 
- 
mixinExtend class globally with category methods. All methods for given class and all super classes will be added to the class.- Parameters:
- self- any Class
- categoryClasses- a category classes to use
- Since:
- 1.6.0
 
- 
mixinExtend class globally with category methods.- Parameters:
- self- any Class
- categoryClass- a category class to use
- Since:
- 1.6.0
 
- 
mixinExtend class globally with category methods.- Parameters:
- self- any Class
- categoryClass- a category class to use
- Since:
- 1.6.0
 
- 
mixinExtend class globally with category methods.- Parameters:
- self- any Class
- categoryClass- a category class to use
- Since:
- 1.6.0
 
- 
mixinExtend class globally with category methods.- Parameters:
- self- any Class
- categoryClass- a category class to use
- Since:
- 1.6.0
 
- 
getLocationGets the url of the jar file/source file containing the specified class- Parameters:
- self- the class
- Returns:
- the url of the jar, nullif the specified class is from JDK
- Since:
- 2.5.0
 
- 
addShutdownHookAllows the usage of addShutdownHook without getting the runtime first.- Parameters:
- self- the object the method is called on (ignored)
- closure- the shutdown hook action
- Since:
- 1.5.0
 
- 
useScoped use method with list of categories.- Parameters:
- self- any Object
- categoryClassList- a list of category classes
- closure- the closure to invoke with the categories in place
- Returns:
- the value returned from the closure
- Since:
- 1.0
 
- 
useAllows you to use a list of categories, specifying the list as varargs.use(CategoryClass1, CategoryClass2) { ... }This method saves having to wrap the category classes in a list.- Parameters:
- self- any Object
- array- a list of category classes and a Closure
- Returns:
- the value returned from the closure
- Since:
- 1.0
 
- 
inspectInspects returns the String that matches what would be typed into a terminal to create this object.- Parameters:
- self- any Object
- Returns:
- a String that matches what would be typed into a terminal to
         create this object. e.g. [1, 'hello'].inspect() ->[1, 'hello']
- Since:
- 1.0
 
- 
invokeMethodProvide a dynamic method invocation method which can be overloaded in classes to implement dynamic proxies easily.- Parameters:
- object- any Object
- method- the name of the method to call
- arguments- the arguments to use
- Returns:
- the result of the method call
- Since:
- 1.0
 
- 
printPrint a value formatted Groovy style to self if it is a Writer, otherwise to the standard output stream.- Parameters:
- self- any Object
- value- the value to print
- Since:
- 1.0
 
- 
printPrint a value formatted Groovy style to the print writer.- Parameters:
- self- a PrintWriter
- value- the value to print
- Since:
- 1.0
 
- 
printPrint a value formatted Groovy style to the print stream.- Parameters:
- self- a PrintStream
- value- the value to print
- Since:
- 1.6.0
 
- 
printPrint a value to the standard output stream. This method delegates to the owner to execute the method.- Parameters:
- self- a generated closure
- value- the value to print
- Since:
- 1.0
 
- 
printPrint to a console in interactive format.- Parameters:
- self- any Object
- out- the PrintWriter used for printing
- Since:
- 1.0
 
- 
printlnPrint a linebreak to the standard output stream.- Parameters:
- self- any Object
- Since:
- 1.0
 
- 
printlnPrint a linebreak to the standard output stream. This method delegates to the owner to execute the method.- Parameters:
- self- a closure
- Since:
- 1.0
 
- 
printlnPrint a value formatted Groovy style (followed by a newline) to self if it is a Writer, otherwise to the standard output stream.- Parameters:
- self- any Object
- value- the value to print
- Since:
- 1.0
 
- 
printlnPrint a value formatted Groovy style (followed by a newline) to the print writer.- Parameters:
- self- a PrintWriter
- value- the value to print
- Since:
- 1.0
 
- 
printlnPrint a value formatted Groovy style (followed by a newline) to the print stream.- Parameters:
- self- any Object
- value- the value to print
- Since:
- 1.6.0
 
- 
printlnPrint a value (followed by a newline) to the standard output stream. This method delegates to the owner to execute the method.- Parameters:
- self- a closure
- value- the value to print
- Since:
- 1.0
 
- 
printlnPrint to a console in interactive format.- Parameters:
- self- any Object
- out- the PrintWriter used for printing
- Since:
- 1.0
 
- 
printfPrintf to the standard output stream.- Parameters:
- self- any Object
- format- a format string
- values- values referenced by the format specifiers in the format string
- Since:
- 1.0
 
- 
printfPrintf 0 or more values to the standard output stream using a format string. This method delegates to the owner to execute the method.- Parameters:
- self- a generated closure
- format- a format string
- values- values referenced by the format specifiers in the format string
- Since:
- 3.0.0
 
- 
printfPrintf a value to the standard output stream using a format string. This method delegates to the owner to execute the method.- Parameters:
- self- a generated closure
- format- a format string
- value- value referenced by the format specifier in the format string
- Since:
- 3.0.0
 
- 
printfPrints a formatted string using the specified format string and arguments.Examples: printf ( "Hello, %s!\n" , [ "world" ] as String[] ) printf ( "Hello, %s!\n" , [ "Groovy" ]) printf ( "%d + %d = %d\n" , [ 1 , 2 , 1+2 ] as Integer[] ) printf ( "%d + %d = %d\n" , [ 3 , 3 , 3+3 ]) ( 1..5 ).each { printf ( "-- %d\n" , [ it ] as Integer[] ) } ( 1..5 ).each { printf ( "-- %d\n" , [ it ] as int[] ) } ( 0x41..0x45 ).each { printf ( "-- %c\n" , [ it ] as char[] ) } ( 07..011 ).each { printf ( "-- %d\n" , [ it ] as byte[] ) } ( 7..11 ).each { printf ( "-- %d\n" , [ it ] as short[] ) } ( 7..11 ).each { printf ( "-- %d\n" , [ it ] as long[] ) } ( 7..11 ).each { printf ( "-- %5.2f\n" , [ it ] as float[] ) } ( 7..11 ).each { printf ( "-- %5.2g\n" , [ it ] as double[] ) }- Parameters:
- self- any Object
- format- A format string
- arg- Argument which is referenced by the format specifiers in the format string. The type of- argshould be one of Object[], List, int[], short[], byte[], char[], boolean[], long[], float[], or double[].
- Since:
- 1.0
 
- 
sprintfSprintf to a string.- Parameters:
- self- any Object
- format- a format string
- values- values referenced by the format specifiers in the format string
- Returns:
- the resulting formatted string
- Since:
- 1.5.0
 
- 
sprintfReturns a formatted string using the specified format string and arguments.- Parameters:
- self- any Object
- format- A format string
- arg- Argument which is referenced by the format specifiers in the format string. The type of- argshould be one of Object[], List, int[], short[], byte[], char[], boolean[], long[], float[], or double[].
- Returns:
- the resulting printf'd string
- Since:
- 1.5.0
 
- 
isCaseMethod for overloading the behavior of the 'case' method in switch statements. The default implementation handles arrays types but otherwise simply delegates to Object#equals, but this may be overridden for other types. In this example:switch( a ) { case b: //some code }"some code" is called whenb.isCase( a )returnstrue.- Parameters:
- caseValue- the case value
- switchValue- the switch value
- Returns:
- true if the switchValue is deemed to be equal to the caseValue
- Since:
- 1.0
 
- 
isCaseSpecial 'Case' implementation for Class, which allows testing whether some switch value is assignable from the given case class. If the switch value is an object,isCasewill return true if the switch value is assignment compatible with the class (case value), i.e. is aninstanceofthe class, for example:def someList = [] switch (someList) { case List: assert true : 'is a list' break case Map: assert false : 'is not a Map' break default: assert false : 'should never get here' break }If the switch value is a class,isCasewill return true if the switch value is assignable from the given class (case value), i.e. the case class is the same as, or a superclass, or a super-interface of the switch class, for example:switch (ArrayList) { case List: assert true : 'is a list' break case Map: assert false : 'is not a Map' break default: assert false : 'should never get here' break }- Parameters:
- caseValue- the case value
- switchValue- the switch value
- Returns:
- true if the switchValue is deemed to be assignable from the given class
- Since:
- 1.0
 
- 
isCase'Case' implementation for collections which tests if the 'switch' operand is contained in any of the 'case' values. For example:switch( 3 ) { case [1,3,5]: assert true break default: assert false }- Parameters:
- caseValue- the case value
- switchValue- the switch value
- Returns:
- true if the caseValue is deemed to contain the switchValue
- Since:
- 1.0
- See Also:
 
- 
isCase'Case' implementation for maps which tests the groovy truth value obtained using the 'switch' operand as key. For example:switch( 'foo' ) { case [foo:true, bar:false]: assert true break default: assert false }- Parameters:
- caseValue- the case value
- switchValue- the switch value
- Returns:
- the groovy truth value from caseValue corresponding to the switchValue key
- Since:
- 1.7.6
 
- 
isCaseSpecial 'case' implementation for all numbers, which delegates to thecompareTo()method for comparing numbers of different types.- Parameters:
- caseValue- the case value
- switchValue- the switch value
- Returns:
- true if the numbers are deemed equal
- Since:
- 1.5.0
 
- 
isNotCase- Since:
- 4.0.0
 
- 
isNotCase- Since:
- 4.0.0
 
- 
isNotCase- Since:
- 4.0.0
 
- 
isNotCase- Since:
- 4.0.0
 
- 
isNotCase- Since:
- 4.0.0
 
- 
isNotCase- Since:
- 4.0.0
 
- 
uniqueReturns an iterator equivalent to this iterator with all duplicated items removed by using Groovy's default number-aware comparator. The original iterator will become exhausted of elements after determining the unique values. A new iterator for the unique values will be returned.- Parameters:
- self- an Iterator
- Returns:
- a new Iterator of the unique items from the original iterator
- Since:
- 1.5.5
 
- 
uniqueModifies this collection to remove all duplicated items, using Groovy's default number-aware comparator.assert [1,3] == [1,3,3].unique() - Parameters:
- self- a collection
- Returns:
- the now modified collection
- Since:
- 1.0
- See Also:
 
- 
uniqueModifies this List to remove all duplicated items, using Groovy's default number-aware comparator.assert [1,3] == [1,3,3].unique() - Parameters:
- self- a List
- Returns:
- the now modified List
- Since:
- 2.4.0
- See Also:
 
- 
uniqueRemove all duplicates from a given Collection using Groovy's default number-aware comparator. If mutate is true, it works by modifying the original object (and also returning it). If mutate is false, a new collection is returned leaving the original unchanged.assert [1,3] == [1,3,3].unique() def orig = [1, 3, 2, 3] def uniq = orig.unique(false) assert orig == [1, 3, 2, 3] assert uniq == [1, 3, 2] - Parameters:
- self- a collection
- mutate- false will return a new collection containing the unique items from the collection, true will mutate collections in place and return the original collection
- Returns:
- a collection with unique elements
- Since:
- 1.8.1
 
- 
uniqueRemove all duplicates from a given List using Groovy's default number-aware comparator. If mutate is true, it works by modifying the original object (and also returning it). If mutate is false, a new collection is returned leaving the original unchanged.assert [1,3] == [1,3,3].unique() def orig = [1, 3, 2, 3] def uniq = orig.unique(false) assert orig == [1, 3, 2, 3] assert uniq == [1, 3, 2] - Parameters:
- self- a List
- mutate- false will cause a new List containing unique items from the List to be created, true will mutate List in place
- Returns:
- the now modified List
- Since:
- 2.4.0
 
- 
numberAwareCompareToProvides a method that compares two comparables using Groovy's default number aware comparator.- Parameters:
- self- a Comparable
- other- another Comparable
- Returns:
- a -ve number, 0 or a +ve number according to Groovy's compareTo contract
- Since:
- 1.6.0
 
- 
uniqueReturns an iterator equivalent to this iterator but with all duplicated items removed by using a Closure to determine duplicate (equal) items. The original iterator will be fully processed after the call.If the closure takes a single parameter, the argument passed will be each element, and the closure should return a value used for comparison (either using Comparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the Iterator will be passed as arguments, and the closure should return an int value (with 0 indicating the items are not unique).- Parameters:
- self- an Iterator
- condition- a Closure used to determine unique items
- Returns:
- the modified Iterator
- Since:
- 1.5.5
 
- 
uniqueA convenience method for making a collection unique using a Closure to determine duplicate (equal) items.If the closure takes a single parameter, the argument passed will be each element, and the closure should return a value used for comparison (either using Comparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the collection will be passed as arguments, and the closure should return an int value (with 0 indicating the items are not unique).assert [1,4] == [1,3,4,5].unique { it % 2 }assert [2,3,4] == [2,3,3,4].unique { a, b->a<=>b }- Parameters:
- self- a Collection
- closure- a 1 or 2 arg Closure used to determine unique items
- Returns:
- self without any duplicates
- Since:
- 1.0
- See Also:
 
- 
uniqueA convenience method for making a List unique using a Closure to determine duplicate (equal) items.If the closure takes a single parameter, the argument passed will be each element, and the closure should return a value used for comparison (either using Comparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the List will be passed as arguments, and the closure should return an int value (with 0 indicating the items are not unique).assert [1,4] == [1,3,4,5].unique { it % 2 }assert [2,3,4] == [2,3,3,4].unique { a, b->a<=>b }- Parameters:
- self- a List
- closure- a 1 or 2 arg Closure used to determine unique items
- Returns:
- self without any duplicates
- Since:
- 2.4.0
- See Also:
 
- 
uniqueA convenience method for making a collection unique using a Closure to determine duplicate (equal) items. If mutate is true, it works on the receiver object and returns it. If mutate is false, a new collection is returned.If the closure takes a single parameter, each element from the Collection will be passed to the closure. The closure should return a value used for comparison (either using Comparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the collection will be passed as arguments, and the closure should return an int value (with 0 indicating the items are not unique).def orig = [1, 3, 4, 5] def uniq = orig.unique(false) { it % 2 } assert orig == [1, 3, 4, 5] assert uniq == [1, 4]def orig = [2, 3, 3, 4] def uniq = orig.unique(false) { a, b->a<=>b } assert orig == [2, 3, 3, 4] assert uniq == [2, 3, 4]- Parameters:
- self- a Collection
- mutate- false will always cause a new list to be created, true will mutate lists in place
- closure- a 1 or 2 arg Closure used to determine unique items
- Returns:
- self without any duplicates
- Since:
- 1.8.1
 
- 
uniqueA convenience method for making a List unique using a Closure to determine duplicate (equal) items. If mutate is true, it works on the receiver object and returns it. If mutate is false, a new collection is returned.If the closure takes a single parameter, each element from the List will be passed to the closure. The closure should return a value used for comparison (either using Comparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the collection will be passed as arguments, and the closure should return an int value (with 0 indicating the items are not unique).def orig = [1, 3, 4, 5] def uniq = orig.unique(false) { it % 2 } assert orig == [1, 3, 4, 5] assert uniq == [1, 4]def orig = [2, 3, 3, 4] def uniq = orig.unique(false) { a, b->a<=>b } assert orig == [2, 3, 3, 4] assert uniq == [2, 3, 4]- Parameters:
- self- a List
- mutate- false will always cause a new list to be created, true will mutate lists in place
- closure- a 1 or 2 arg Closure used to determine unique items
- Returns:
- self without any duplicates
- Since:
- 2.4.0
 
- 
uniqueReturns an iterator equivalent to this iterator with all duplicated items removed by using the supplied comparator. The original iterator will be exhausted upon returning.- Parameters:
- self- an Iterator
- comparator- a Comparator
- Returns:
- the modified Iterator
- Since:
- 1.5.5
 
- 
uniqueRemove all duplicates from a given Collection. Works on the original object (and also returns it). The order of members in the Collection are compared by the given Comparator. For each duplicate, the first member which is returned by the given Collection's iterator is retained, but all other ones are removed. The given Collection's original order is preserved.class Person { def fname, lname String toString() { return fname + " " + lname } } class PersonComparator implements Comparator { int compare(Object o1, Object o2) { Person p1 = (Person) o1 Person p2 = (Person) o2 if (p1.lname != p2.lname) return p1.lname.compareTo(p2.lname) else return p1.fname.compareTo(p2.fname) } boolean equals(Object obj) { return this.equals(obj) } } Person a = new Person(fname:"John", lname:"Taylor") Person b = new Person(fname:"Clark", lname:"Taylor") Person c = new Person(fname:"Tom", lname:"Cruz") Person d = new Person(fname:"Clark", lname:"Taylor") def list = [a, b, c, d] List list2 = list.unique(new PersonComparator()) assert( list2 == list&&list == [a, b, c] )- Parameters:
- self- a Collection
- comparator- a Comparator
- Returns:
- self the now modified collection without duplicates
- Since:
- 1.0
- See Also:
 
- 
uniqueRemove all duplicates from a given List. Works on the original object (and also returns it). The order of members in the List are compared by the given Comparator. For each duplicate, the first member which is returned by the given List's iterator is retained, but all other ones are removed. The given List's original order is preserved.class Person { def fname, lname String toString() { return fname + " " + lname } } class PersonComparator implements Comparator { int compare(Object o1, Object o2) { Person p1 = (Person) o1 Person p2 = (Person) o2 if (p1.lname != p2.lname) return p1.lname.compareTo(p2.lname) else return p1.fname.compareTo(p2.fname) } boolean equals(Object obj) { return this.equals(obj) } } Person a = new Person(fname:"John", lname:"Taylor") Person b = new Person(fname:"Clark", lname:"Taylor") Person c = new Person(fname:"Tom", lname:"Cruz") Person d = new Person(fname:"Clark", lname:"Taylor") def list = [a, b, c, d] List list2 = list.unique(new PersonComparator()) assert( list2 == list&&list == [a, b, c] )- Parameters:
- self- a List
- comparator- a Comparator
- Returns:
- self the now modified List without duplicates
- Since:
- 2.4.0
- See Also:
 
- 
uniquepublic static <T> Collection<T> unique(Collection<T> self, boolean mutate, Comparator<? super T> comparator) Remove all duplicates from a given Collection. If mutate is true, it works on the original object (and also returns it). If mutate is false, a new collection is returned. The order of members in the Collection are compared by the given Comparator. For each duplicate, the first member which is returned by the given Collection's iterator is retained, but all other ones are removed. The given Collection's original order is preserved.class Person { def fname, lname String toString() { return fname + " " + lname } } class PersonComparator implements Comparator { int compare(Object o1, Object o2) { Person p1 = (Person) o1 Person p2 = (Person) o2 if (p1.lname != p2.lname) return p1.lname.compareTo(p2.lname) else return p1.fname.compareTo(p2.fname) } boolean equals(Object obj) { return this.equals(obj) } } Person a = new Person(fname:"John", lname:"Taylor") Person b = new Person(fname:"Clark", lname:"Taylor") Person c = new Person(fname:"Tom", lname:"Cruz") Person d = new Person(fname:"Clark", lname:"Taylor") def list = [a, b, c, d] List list2 = list.unique(false, new PersonComparator()) assert( list2 != list&&list2 == [a, b, c] )- Parameters:
- self- a Collection
- mutate- false will always cause a new collection to be created, true will mutate collections in place
- comparator- a Comparator
- Returns:
- self the collection without duplicates
- Since:
- 1.8.1
 
- 
uniqueRemove all duplicates from a given List. If mutate is true, it works on the original object (and also returns it). If mutate is false, a new List is returned. The order of members in the List are compared by the given Comparator. For each duplicate, the first member which is returned by the given List's iterator is retained, but all other ones are removed. The given List's original order is preserved.class Person { def fname, lname String toString() { return fname + " " + lname } } class PersonComparator implements Comparator { int compare(Object o1, Object o2) { Person p1 = (Person) o1 Person p2 = (Person) o2 if (p1.lname != p2.lname) return p1.lname.compareTo(p2.lname) else return p1.fname.compareTo(p2.fname) } boolean equals(Object obj) { return this.equals(obj) } } Person a = new Person(fname:"John", lname:"Taylor") Person b = new Person(fname:"Clark", lname:"Taylor") Person c = new Person(fname:"Tom", lname:"Cruz") Person d = new Person(fname:"Clark", lname:"Taylor") def list = [a, b, c, d] List list2 = list.unique(false, new PersonComparator()) assert( list2 != list&&list2 == [a, b, c] )- Parameters:
- self- a List
- mutate- false will always cause a new List to be created, true will mutate List in place
- comparator- a Comparator
- Returns:
- self the List without duplicates
- Since:
- 2.4.0
 
- 
toUniqueReturns an iterator equivalent to this iterator but with all duplicated items removed where duplicate (equal) items are deduced by calling the supplied Closure condition.If the supplied Closure takes a single parameter, the argument passed will be each element, and the closure should return a value used for comparison (either using Comparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the Iterator will be passed as arguments, and the closure should return an int value (with 0 indicating the items are not unique).def items = "Hello".toList() + [null, null] + "there".toList() def toLower = { it == null ? null : it.toLowerCase() } def noDups = items.iterator().toUnique(toLower).toList() assert noDups == ['H', 'e', 'l', 'o', null, 't', 'r']assert [1,4] == [1,3,4,5].toUnique { it % 2 }assert [2,3,4] == [2,3,3,4].toUnique { a, b->a<=>b }- Parameters:
- self- an Iterator
- condition- a Closure used to determine unique items
- Returns:
- an Iterator with no duplicate items
- Since:
- 2.4.0
 
- 
toUniqueReturns an iterator equivalent to this iterator with all duplicated items removed by using the supplied comparator.- Parameters:
- self- an Iterator
- comparator- a Comparator used to determine unique (equal) items If- null, the Comparable natural ordering of the elements will be used.
- Returns:
- an Iterator with no duplicate items
- Since:
- 2.4.0
 
- 
toUniqueReturns an iterator equivalent to this iterator with all duplicated items removed by using the natural ordering of the items.- Parameters:
- self- an Iterator
- Returns:
- an Iterator with no duplicate items
- Since:
- 2.4.0
 
- 
toUniqueReturns a Collection containing the items from the Iterable but with duplicates removed. The items in the Iterable are compared by the given Comparator. For each duplicate, the first member which is returned from the Iterable is retained, but all other ones are removed.class Person { def fname, lname String toString() { return fname + " " + lname } } class PersonComparator implements Comparator { int compare(Object o1, Object o2) { Person p1 = (Person) o1 Person p2 = (Person) o2 if (p1.lname != p2.lname) return p1.lname.compareTo(p2.lname) else return p1.fname.compareTo(p2.fname) } boolean equals(Object obj) { return this.equals(obj) } } Person a = new Person(fname:"John", lname:"Taylor") Person b = new Person(fname:"Clark", lname:"Taylor") Person c = new Person(fname:"Tom", lname:"Cruz") Person d = new Person(fname:"Clark", lname:"Taylor") def list = [a, b, c, d] List list2 = list.toUnique(new PersonComparator()) assert list2 == [a, b, c]&&list == [a, b, c, d]- Parameters:
- self- an Iterable
- comparator- a Comparator used to determine unique (equal) items If- null, the Comparable natural ordering of the elements will be used.
- Returns:
- the Collection of non-duplicate items
- Since:
- 2.4.0
 
- 
toUniqueReturns a List containing the items from the List but with duplicates removed. The items in the List are compared by the given Comparator. For each duplicate, the first member which is returned from the List is retained, but all other ones are removed.class Person { def fname, lname String toString() { return fname + " " + lname } } class PersonComparator implements Comparator { int compare(Object o1, Object o2) { Person p1 = (Person) o1 Person p2 = (Person) o2 if (p1.lname != p2.lname) return p1.lname.compareTo(p2.lname) else return p1.fname.compareTo(p2.fname) } boolean equals(Object obj) { return this.equals(obj) } } Person a = new Person(fname:"John", lname:"Taylor") Person b = new Person(fname:"Clark", lname:"Taylor") Person c = new Person(fname:"Tom", lname:"Cruz") Person d = new Person(fname:"Clark", lname:"Taylor") def list = [a, b, c, d] List list2 = list.toUnique(new PersonComparator()) assert list2 == [a, b, c]&&list == [a, b, c, d]- Parameters:
- self- a List
- comparator- a Comparator used to determine unique (equal) items If- null, the Comparable natural ordering of the elements will be used.
- Returns:
- the List of non-duplicate items
- Since:
- 2.4.0
 
- 
toUniqueReturns a Collection containing the items from the Iterable but with duplicates removed using the natural ordering of the items to determine uniqueness.String[] letters = ['c', 'a', 't', 's', 'a', 't', 'h', 'a', 't'] String[] expected = ['c', 'a', 't', 's', 'h'] assert letters.toUnique() == expected - Parameters:
- self- an Iterable
- Returns:
- the Collection of non-duplicate items
- Since:
- 2.4.0
 
- 
toUniqueReturns a List containing the items from the List but with duplicates removed using the natural ordering of the items to determine uniqueness.def letters = ['c', 'a', 't', 's', 'a', 't', 'h', 'a', 't'] def expected = ['c', 'a', 't', 's', 'h'] assert letters.toUnique() == expected - Parameters:
- self- a List
- Returns:
- the List of non-duplicate items
- Since:
- 2.4.0
 
- 
toUniqueReturns a Collection containing the items from the Iterable but with duplicates removed. The items in the Iterable are compared by the given Closure condition. For each duplicate, the first member which is returned from the Iterable is retained, but all other ones are removed.If the closure takes a single parameter, each element from the Iterable will be passed to the closure. The closure should return a value used for comparison (either using Comparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the Iterable will be passed as arguments, and the closure should return an int value (with 0 indicating the items are not unique).class Person { def fname, lname String toString() { return fname + " " + lname } } Person a = new Person(fname:"John", lname:"Taylor") Person b = new Person(fname:"Clark", lname:"Taylor") Person c = new Person(fname:"Tom", lname:"Cruz") Person d = new Person(fname:"Clark", lname:"Taylor") def list = [a, b, c, d] def list2 = list.toUnique{ p1, p2->p1.lname != p2.lname ? p1.lname <=> p2.lname : p1.fname <=> p2.fname } assert( list2 == [a, b, c]&&list == [a, b, c, d] ) def list3 = list.toUnique{ it.toString() } assert( list3 == [a, b, c]&&list == [a, b, c, d] )- Parameters:
- self- an Iterable
- condition- a Closure used to determine unique items
- Returns:
- a new Collection
- Since:
- 2.4.0
- See Also:
 
- 
toUniqueReturns a List containing the items from the List but with duplicates removed. The items in the List are compared by the given Closure condition. For each duplicate, the first member which is returned from the Iterable is retained, but all other ones are removed.If the closure takes a single parameter, each element from the Iterable will be passed to the closure. The closure should return a value used for comparison (either using Comparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the Iterable will be passed as arguments, and the closure should return an int value (with 0 indicating the items are not unique).class Person { def fname, lname String toString() { return fname + " " + lname } } Person a = new Person(fname:"John", lname:"Taylor") Person b = new Person(fname:"Clark", lname:"Taylor") Person c = new Person(fname:"Tom", lname:"Cruz") Person d = new Person(fname:"Clark", lname:"Taylor") def list = [a, b, c, d] def list2 = list.toUnique{ p1, p2->p1.lname != p2.lname ? p1.lname <=> p2.lname : p1.fname <=> p2.fname } assert( list2 == [a, b, c]&&list == [a, b, c, d] ) def list3 = list.toUnique{ it.toString() } assert( list3 == [a, b, c]&&list == [a, b, c, d] )- Parameters:
- self- a List
- condition- a Closure used to determine unique items
- Returns:
- a new List
- Since:
- 2.4.0
- See Also:
 
- 
toUniqueReturns a new Array containing the items from the original Array but with duplicates removed with the supplied comparator determining which items are unique.String[] letters = ['c', 'a', 't', 's', 'A', 't', 'h', 'a', 'T'] String[] lower = ['c', 'a', 't', 's', 'h'] class LowerComparator implements Comparator { int compare(let1, let2) { let1.toLowerCase()<=>let2.toLowerCase() } } assert letters.toUnique(new LowerComparator()) == lower- Parameters:
- self- an array
- comparator- a Comparator used to determine unique (equal) items If- null, the Comparable natural ordering of the elements will be used.
- Returns:
- the unique items from the array
 
- 
toUniquepublic static <T> T[] toUnique(T[] self) Returns a new Array containing the items from the original Array but with duplicates removed using the natural ordering of the items in the array.String[] letters = ['c', 'a', 't', 's', 'a', 't', 'h', 'a', 't'] String[] expected = ['c', 'a', 't', 's', 'h'] def result = letters.toUnique() assert result == expected assert result.class.componentType == String - Parameters:
- self- an array
- Returns:
- the unique items from the array
 
- 
toUniqueReturns a new Array containing the items from the original Array but with duplicates removed with the supplied comparator determining which items are unique.String[] letters = ['c', 'a', 't', 's', 'A', 't', 'h', 'a', 'T'] String[] expected = ['c', 'a', 't', 's', 'h'] assert letters.toUnique{ p1, p2->p1.toLowerCase()<=>p2.toLowerCase() } == expected assert letters.toUnique{ it.toLowerCase() } == expected- Parameters:
- self- an array
- condition- a Closure used to determine unique items
- Returns:
- the unique items from the array
 
- 
eachIterates through an array passing each array entry to the given closure.String[] letters = ['a', 'b', 'c'] String result = '' letters.each{ result += it } assert result == 'abc'- Parameters:
- self- the array over which we iterate
- closure- the closure applied on each array entry
- Returns:
- the self array
- Since:
- 2.5.0
 
- 
eachIterates through an aggregate type or data structure, passing each item to the given closure. Custom types may utilize this method by simply providing an "iterator()" method. The items returned from the resulting iterator will be passed to the closure.String result = '' ['a', 'b', 'c'].each{ result += it } assert result == 'abc'- Parameters:
- self- the object over which we iterate
- closure- the closure applied on each element found
- Returns:
- the self Object
- Since:
- 1.0
 
- 
eachWithIndexIterates through an array, passing each array element and the element's index (a counter starting at zero) to the given closure.String[] letters = ['a', 'b', 'c'] String result = '' letters.eachWithIndex{ letter, index->result += "$index:$letter" } assert result == '0:a1:b2:c'- Parameters:
- self- an array
- closure- a Closure to operate on each array entry
- Returns:
- the self array
- Since:
- 2.5.0
 
- 
eachWithIndexIterates through an aggregate type or data structure, passing each item and the item's index (a counter starting at zero) to the given closure.String result = '' ['a', 'b', 'c'].eachWithIndex{ letter, index->result += "$index:$letter" } assert result == '0:a1:b2:c'- Parameters:
- self- an Object
- closure- a Closure to operate on each item
- Returns:
- the self Object
- Since:
- 1.0
 
- 
eachWithIndexIterates through an iterable type, passing each item and the item's index (a counter starting at zero) to the given closure.- Parameters:
- self- an Iterable
- closure- a Closure to operate on each item
- Returns:
- the self Iterable
- Since:
- 2.3.0
 
- 
eachWithIndexIterates through an iterator type, passing each item and the item's index (a counter starting at zero) to the given closure.- Parameters:
- self- an Iterator
- closure- a Closure to operate on each item
- Returns:
- the self Iterator (now exhausted)
- Since:
- 2.3.0
 
- 
eachWithIndexIterates through a Collection, passing each item and the item's index (a counter starting at zero) to the given closure.- Parameters:
- self- a Collection
- closure- a Closure to operate on each item
- Returns:
- the self Collection
- Since:
- 2.4.0
 
- 
eachWithIndexIterates through a List, passing each item and the item's index (a counter starting at zero) to the given closure.- Parameters:
- self- a List
- closure- a Closure to operate on each item
- Returns:
- the self List
- Since:
- 2.4.0
 
- 
eachWithIndexIterates through a Set, passing each item and the item's index (a counter starting at zero) to the given closure.- Parameters:
- self- a Set
- closure- a Closure to operate on each item
- Returns:
- the self Set
- Since:
- 2.4.0
 
- 
eachWithIndexIterates through a SortedSet, passing each item and the item's index (a counter starting at zero) to the given closure.- Parameters:
- self- a SortedSet
- closure- a Closure to operate on each item
- Returns:
- the self SortedSet
- Since:
- 2.4.0
 
- 
eachIterates through an Iterable, passing each item to the given closure.- Parameters:
- self- the Iterable over which we iterate
- closure- the closure applied on each element found
- Returns:
- the self Iterable
 
- 
eachIterates through an Iterator, passing each item to the given closure.- Parameters:
- self- the Iterator over which we iterate
- closure- the closure applied on each element found
- Returns:
- the self Iterator
- Since:
- 2.4.0
 
- 
eachIterates through a Collection, passing each item to the given closure.- Parameters:
- self- the Collection over which we iterate
- closure- the closure applied on each element found
- Returns:
- the self Collection
- Since:
- 2.4.0
 
- 
eachIterates through a List, passing each item to the given closure.- Parameters:
- self- the List over which we iterate
- closure- the closure applied on each element found
- Returns:
- the self List
- Since:
- 2.4.0
 
- 
eachIterates through a Set, passing each item to the given closure.- Parameters:
- self- the Set over which we iterate
- closure- the closure applied on each element found
- Returns:
- the self Set
- Since:
- 2.4.0
 
- 
eachIterates through a SortedSet, passing each item to the given closure.- Parameters:
- self- the SortedSet over which we iterate
- closure- the closure applied on each element found
- Returns:
- the self SortedSet
- Since:
- 2.4.0
 
- 
eachAllows a Map to be iterated through using a closure. If the closure takes one parameter then it will be passed the Map.Entry otherwise if the closure takes two parameters then it will be passed the key and the value.def result = "" [a:1, b:3].each { key, value->result += "$key$value" } assert result == "a1b3"def result = "" [a:1, b:3].each { entryIn general, the order in which the map contents are processed cannot be guaranteed. In practise, specialized forms of Map, e.g. a TreeMap will have its contents processed according to the natural ordering of the map.->result += entry } assert result == "a=1b=3"- Parameters:
- self- the map over which we iterate
- closure- the 1 or 2 arg closure applied on each entry of the map
- Returns:
- returns the self parameter
- Since:
- 1.5.0
 
- 
reverseEachAllows a Map to be iterated through in reverse order using a closure. In general, the order in which the map contents are processed cannot be guaranteed. In practise, specialized forms of Map, e.g. a TreeMap will have its contents processed according to the reverse of the natural ordering of the map.- Parameters:
- self- the map over which we iterate
- closure- the 1 or 2 arg closure applied on each entry of the map
- Returns:
- returns the self parameter
- Since:
- 1.7.2
- See Also:
 
- 
eachWithIndexAllows a Map to be iterated through using a closure. If the closure takes two parameters then it will be passed the Map.Entry and the item's index (a counter starting at zero) otherwise if the closure takes three parameters then it will be passed the key, the value, and the index.def result = "" [a:1, b:3].eachWithIndex { key, value, index->result += "$index($key$value)" } assert result == "0(a1)1(b3)"def result = "" [a:1, b:3].eachWithIndex { entry, index->result += "$index($entry)" } assert result == "0(a=1)1(b=3)"- Parameters:
- self- the map over which we iterate
- closure- a 2 or 3 arg Closure to operate on each item
- Returns:
- the self Object
- Since:
- 1.5.0
 
- 
reverseEachIterate over each element of the list in the reverse order.def result = [] [1,2,3].reverseEach { result << it } assert result == [3,2,1]- Parameters:
- self- a List
- closure- a closure to which each item is passed.
- Returns:
- the original list
- Since:
- 1.5.0
 
- 
reverseEachIterate over each element of the array in the reverse order.- Parameters:
- self- an array
- closure- a closure to which each item is passed
- Returns:
- the original array
- Since:
- 1.5.2
 
- 
everyUsed to determine if the given predicate closure is valid (i.e. returnstruefor all items in this data structure). A simple example for a list:def list = [3,4,5] def greaterThanTwo = list.every { it>2 }- Parameters:
- self- the object over which we iterate
- predicate- the closure predicate used for matching
- Returns:
- true if every iteration of the object matches the closure predicate
- Since:
- 1.0
 
- 
everyUsed to determine if the given predicate closure is valid (i.e. returnstruefor all items in this iterator). A simple example for a list:def list = [3,4,5] def greaterThanTwo = list.iterator().every { it>2 }- Parameters:
- self- the iterator over which we iterate
- predicate- the closure predicate used for matching
- Returns:
- true if every iteration of the object matches the closure predicate
- Since:
- 2.3.0
 
- 
everyUsed to determine if the given predicate closure is valid (i.e. returnstruefor all items in this Array).- Parameters:
- self- an Array
- predicate- the closure predicate used for matching
- Returns:
- true if every element of the Array matches the closure predicate
- Since:
- 2.5.0
 
- 
everyUsed to determine if the given predicate closure is valid (i.e. returnstruefor all items in this iterable). A simple example for a list:def list = [3,4,5] def greaterThanTwo = list.every { it>2 }- Parameters:
- self- the iterable over which we iterate
- predicate- the closure predicate used for matching
- Returns:
- true if every iteration of the object matches the closure predicate
- Since:
- 2.3.0
 
- 
everyIterates over the entries of a map, and checks whether a predicate is valid for all entries. If the closure takes one parameter then it will be passed the Map.Entry otherwise if the closure takes two parameters then it will be passed the key and the value.def map = [a:1, b:2.0, c:2L] assert !map.every { key, value->value instanceof Integer } assert map.every { entry->entry.value instanceof Number }- Parameters:
- self- the map over which we iterate
- predicate- the 1 or 2 arg Closure predicate used for matching
- Returns:
- true if every entry of the map matches the closure predicate
- Since:
- 1.5.0
 
- 
everyIterates over every element of a collection, and checks whether all elements aretrueaccording to the Groovy Truth. Equivalent toself.every({element->element})assert [true, true].every() assert [1, 1].every() assert ![1, 0].every() - Parameters:
- self- the object over which we iterate
- Returns:
- true if every item in the collection matches satisfies Groovy truth
- Since:
- 1.5.0
 
- 
anyIterates over the contents of an object or collection, and checks whether a predicate is valid for at least one element.assert [1, 2, 3].any { it == 2 } assert ![1, 2, 3].any { it>3 }- Parameters:
- self- the object over which we iterate
- predicate- the closure predicate used for matching
- Returns:
- true if any iteration for the object matches the closure predicate
- Since:
- 1.0
 
- 
anyIterates over the contents of an iterator, and checks whether a predicate is valid for at least one element.assert [1, 2, 3].iterator().any { it == 2 } assert ![1, 2, 3].iterator().any { it>3 }- Parameters:
- self- the iterator over which we iterate
- predicate- the closure predicate used for matching
- Returns:
- true if any iteration for the object matches the closure predicate
- Since:
- 1.0
 
- 
anyIterates over the contents of an iterable, and checks whether a predicate is valid for at least one element.assert [1, 2, 3].any { it == 2 } assert ![1, 2, 3].any { it>3 }- Parameters:
- self- the iterable over which we iterate
- predicate- the closure predicate used for matching
- Returns:
- true if any iteration for the object matches the closure predicate
- Since:
- 1.0
 
- 
anyIterates over the contents of an Array, and checks whether a predicate is valid for at least one element.- Parameters:
- self- the array over which we iterate
- predicate- the closure predicate used for matching
- Returns:
- true if any iteration for the object matches the closure predicate
- Since:
- 2.5.0
 
- 
anyIterates over the entries of a map, and checks whether a predicate is valid for at least one entry. If the closure takes one parameter then it will be passed the Map.Entry otherwise if the closure takes two parameters then it will be passed the key and the value.assert [2:3, 4:5, 5:10].any { key, value->key * 2 == value } assert ![2:3, 4:5, 5:10].any { entry->entry.key == entry.value * 2 }- Parameters:
- self- the map over which we iterate
- predicate- the 1 or 2 arg closure predicate used for matching
- Returns:
- true if any entry in the map matches the closure predicate
- Since:
- 1.5.0
 
- 
anyIterates over the elements of a collection, and checks whether at least one element is true according to the Groovy Truth. Equivalent to self.any({element->element})assert [false, true].any() assert [0, 1].any() assert ![0, 0].any() - Parameters:
- self- the object over which we iterate
- Returns:
- true if any item in the collection matches the closure predicate
- Since:
- 1.5.0
 
- 
grepIterates over the collection of items which this Object represents and returns each item that matches the given filter - calling theisCase(java.lang.Object, java.lang.Object)def list = ['a', 'b', 'aa', 'bc', 3, 4.5] assert list.grep( ~/a+/ ) == ['a', 'aa'] assert list.grep( ~/../ ) == ['aa', 'bc'] assert list.grep( Number ) == [ 3, 4.5 ] assert list.grep{ it.toString().size() == 1 } == [ 'a', 'b', 3 ]- Parameters:
- self- the object over which we iterate
- filter- the filter to perform on the object (using the- isCase(java.lang.Object, java.lang.Object)method)
- Returns:
- a collection of objects which match the filter
- Since:
- 1.5.6
 
- 
grepIterates over the collection of items and returns each item that matches the given filter - calling theisCase(java.lang.Object, java.lang.Object)def list = ['a', 'b', 'aa', 'bc', 3, 4.5] assert list.grep( ~/a+/ ) == ['a', 'aa'] assert list.grep( ~/../ ) == ['aa', 'bc'] assert list.grep( Number ) == [ 3, 4.5 ] assert list.grep{ it.toString().size() == 1 } == [ 'a', 'b', 3 ]- Parameters:
- self- a collection
- filter- the filter to perform on each element of the collection (using the- isCase(java.lang.Object, java.lang.Object)method)
- Returns:
- a collection of objects which match the filter
- Since:
- 2.0
 
- 
grepIterates over the collection of items and returns each item that matches the given filter - calling theisCase(java.lang.Object, java.lang.Object)def list = ['a', 'b', 'aa', 'bc', 3, 4.5] assert list.grep( ~/a+/ ) == ['a', 'aa'] assert list.grep( ~/../ ) == ['aa', 'bc'] assert list.grep( Number ) == [ 3, 4.5 ] assert list.grep{ it.toString().size() == 1 } == [ 'a', 'b', 3 ]- Parameters:
- self- a List
- filter- the filter to perform on each element of the collection (using the- isCase(java.lang.Object, java.lang.Object)method)
- Returns:
- a List of objects which match the filter
- Since:
- 2.4.0
 
- 
grepIterates over the collection of items and returns each item that matches the given filter - calling theisCase(java.lang.Object, java.lang.Object)def set = ['a', 'b', 'aa', 'bc', 3, 4.5] as Set assert set.grep( ~/a+/ ) == ['a', 'aa'] as Set assert set.grep( ~/../ ) == ['aa', 'bc'] as Set assert set.grep( Number ) == [ 3, 4.5 ] as Set assert set.grep{ it.toString().size() == 1 } == [ 'a', 'b', 3 ] as Set- Parameters:
- self- a Set
- filter- the filter to perform on each element of the collection (using the- isCase(java.lang.Object, java.lang.Object)method)
- Returns:
- a Set of objects which match the filter
- Since:
- 2.4.0
 
- 
grepIterates over the array of items and returns a collection of items that match the given filter - calling theisCase(java.lang.Object, java.lang.Object)def items = ['a', 'b', 'aa', 'bc', 3, 4.5] as Object[] assert items.grep( ~/a+/ ) == ['a', 'aa'] assert items.grep( ~/../ ) == ['aa', 'bc'] assert items.grep( Number ) == [ 3, 4.5 ] assert items.grep{ it.toString().size() == 1 } == [ 'a', 'b', 3 ]- Parameters:
- self- an array
- filter- the filter to perform on each element of the array (using the- isCase(java.lang.Object, java.lang.Object)method)
- Returns:
- a collection of objects which match the filter
- Since:
- 2.0
 
- 
grepIterates over the collection of items which this Object represents and returns each item that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] assert items.grep() == [1, 2, true, 'foo', [4, 5]] - Parameters:
- self- the object over which we iterate
- Returns:
- a collection of objects which match the filter
- Since:
- 1.8.1
- See Also:
 
- 
grepIterates over the collection returning each element that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] assert items.grep() == [1, 2, true, 'foo', [4, 5]] - Parameters:
- self- a Collection
- Returns:
- a collection of elements satisfy Groovy truth
- Since:
- 2.0
- See Also:
 
- 
grepIterates over the collection returning each element that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] assert items.grep() == [1, 2, true, 'foo', [4, 5]] - Parameters:
- self- a List
- Returns:
- a List of elements satisfy Groovy truth
- Since:
- 2.4.0
- See Also:
 
- 
grepIterates over the collection returning each element that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] as Set assert items.grep() == [1, 2, true, 'foo', [4, 5]] as Set - Parameters:
- self- a Set
- Returns:
- a Set of elements satisfy Groovy truth
- Since:
- 2.4.0
- See Also:
 
- 
grepIterates over the array returning each element that matches using the IDENTITY Closure as a filter - effectively returning all elements which satisfy Groovy truth.Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] as Object[] assert items.grep() == [1, 2, true, 'foo', [4, 5]] - Parameters:
- self- an array
- Returns:
- a collection of elements which satisfy Groovy truth
- Since:
- 2.0
- See Also:
 
- 
countCounts the number of occurrences of the given value from the items within this Iterator. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)). The iterator will become exhausted of elements after determining the count value.- Parameters:
- self- the Iterator from which we count the number of matching occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.5.0
 
- 
countCounts the number of occurrences which satisfy the given closure from the items within this Iterator. The iterator will become exhausted of elements after determining the count value.Example usage: assert [2,4,2,1,3,5,2,4,3].toSet().iterator().count{ it % 2 == 0 } == 2- Parameters:
- self- the Iterator from which we count the number of matching occurrences
- closure- a closure condition
- Returns:
- the number of occurrences
- Since:
- 1.8.0
 
- 
countCounts the number of occurrences which satisfy the given closure from the items within this Iterator, adding the count to the initial count. The iterator will become exhausted of elements after determining the count value.Example usage: assert [2,4,2,1,3,5,2,4,3].toSet().iterator().count(100){ it % 2 == 0 } == 102- Parameters:
- self- the Iterator from which we count the number of matching occurrences
- initialCount- start counting from this value
- closure- a closure condition
- Returns:
- the number of occurrences
- Since:
- 4.0.14
 
- 
countCounts the number of occurrences of the given value inside this Iterable. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).Example usage: assert [2,4,2,1,3,5,2,4,3].count(4) == 2 - Parameters:
- self- the Iterable within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 2.2.0
 
- 
countCounts the number of occurrences which satisfy the given closure from inside this Iterable.Example usage: assert [2,4,2,1,3,5,2,4,3].count{ it % 2 == 0 } == 5- Parameters:
- self- the Iterable within which we count the number of occurrences
- closure- a closure condition
- Returns:
- the number of occurrences
- Since:
- 2.2.0
 
- 
countCounts the number of occurrences which satisfy the given closure from inside this Iterable.Example usage: assert [2,4,2,1,3,5,2,4,3].count(100L){ it % 2 == 0 } == 105L- Parameters:
- self- the Iterable within which we count the number of occurrences
- initialCount- start counting from this value
- closure- a closure condition
- Returns:
- the number of occurrences
- Since:
- 4.0.14
 
- 
countCounts the number of occurrences which satisfy the given closure from inside this map. If the closure takes one parameter then it will be passed the Map.Entry. Otherwise, the closure should take two parameters and will be passed the key and value.Example usage: assert [a:1, b:1, c:2, d:2].count{ k,v->k == 'a'||v == 2 } == 3- Parameters:
- self- the map within which we count the number of occurrences
- closure- a 1 or 2 arg Closure condition applying on the entries
- Returns:
- the number of occurrences
- Since:
- 1.8.0
 
- 
countCounts the number of occurrences which satisfy the given closure from inside this map. If the closure takes one parameter then it will be passed the Map.Entry. Otherwise, the closure should take two parameters and will be passed the key and value.Example usage: assert [a:1, b:1, c:2, d:2].count(100G){ k,v->k == 'a'||v == 2 } == 103G- Parameters:
- self- the map within which we count the number of occurrences
- initialCount- start counting from this value
- closure- a 1 or 2 arg Closure condition applying on the entries
- Returns:
- the number of occurrences
- Since:
- 4.0.14
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
countCounts the number of occurrences which satisfy the given closure from inside this array.- Parameters:
- self- the array within which we count the number of occurrences
- closure- a closure condition
- Returns:
- the number of occurrences
- Since:
- 1.8.0
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
countCounts the number of occurrences of the given value inside this array. Comparison is done using Groovy's == operator (usingcompareTo(value) == 0orequals(value)).- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.6.4
 
- 
toListConvert an iterator to a List. The iterator will become exhausted of elements after making this conversion.- Parameters:
- self- an iterator
- Returns:
- a List
- Since:
- 1.5.0
 
- 
toListConvert an Iterable to a List. The Iterable's iterator will become exhausted of elements after making this conversion.Example usage: def x = [1,2,3] as HashSet assert x.class == HashSet assert x.toList() instanceof List - Parameters:
- self- an Iterable
- Returns:
- a List
- Since:
- 1.8.7
 
- 
toListConvert an enumeration to a List.- Parameters:
- self- an enumeration
- Returns:
- a List
- Since:
- 1.5.0
 
- 
collateCollates this iterable into sub-lists of lengthsize. Example:def list = [ 1, 2, 3, 4, 5, 6, 7 ] def coll = list.collate( 3 ) assert coll == [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7 ] ] - Parameters:
- self- an Iterable
- size- the length of each sub-list in the returned list
- Returns:
- a List containing the data collated into sub-lists
- Since:
- 2.4.0
 
- 
collateCollates an array.- Parameters:
- self- an array
- size- the length of each sub-list in the returned list
- Returns:
- a List containing the array values collated into sub-lists
- Since:
- 2.5.0
- See Also:
 
- 
collateCollates this iterable into sub-lists of lengthsizestepping through the codestepelements for each subList. Example:def list = [ 1, 2, 3, 4 ] def coll = list.collate( 3, 1 ) assert coll == [ [ 1, 2, 3 ], [ 2, 3, 4 ], [ 3, 4 ], [ 4 ] ] - Parameters:
- self- an Iterable
- size- the length of each sub-list in the returned list
- step- the number of elements to step through for each sub-list
- Returns:
- a List containing the data collated into sub-lists
- Since:
- 2.4.0
 
- 
collateCollates an array into sub-lists.- Parameters:
- self- an array
- size- the length of each sub-list in the returned list
- step- the number of elements to step through for each sub-list
- Returns:
- a List containing the array elements collated into sub-lists
- Since:
- 2.5.0
- See Also:
 
- 
collateCollates this iterable into sub-lists of lengthsize. Any remaining elements in the iterable after the subdivision will be dropped ifkeepRemainderis false. Example:def list = [ 1, 2, 3, 4, 5, 6, 7 ] def coll = list.collate( 3, false ) assert coll == [ [ 1, 2, 3 ], [ 4, 5, 6 ] ] - Parameters:
- self- an Iterable
- size- the length of each sub-list in the returned list
- keepRemainder- if true, any remaining elements are returned as sub-lists. Otherwise they are discarded
- Returns:
- a List containing the data collated into sub-lists
- Since:
- 2.4.0
 
- 
collateCollates this array into sub-lists.- Parameters:
- self- an array
- size- the length of each sub-list in the returned list
- keepRemainder- if true, any remaining elements are returned as sub-lists. Otherwise they are discarded
- Returns:
- a List containing the array elements collated into sub-lists
- Since:
- 2.5.0
- See Also:
 
- 
collatepublic static <T> List<List<T>> collate(Iterable<T> self, int size, int step, boolean keepRemainder) Collates this iterable into sub-lists of lengthsizestepping through the codestepelements for each sub-list. Any remaining elements in the iterable after the subdivision will be dropped ifkeepRemainderis false. Example:def list = [ 1, 2, 3, 4 ] assert list.collate( 2, 2, true ) == [ [ 1, 2 ], [ 3, 4 ] ] assert list.collate( 3, 1, true ) == [ [ 1, 2, 3 ], [ 2, 3, 4 ], [ 3, 4 ], [ 4 ] ] assert list.collate( 3, 1, false ) == [ [ 1, 2, 3 ], [ 2, 3, 4 ] ] - Parameters:
- self- an Iterable
- size- the length of each sub-list in the returned list
- step- the number of elements to step through for each sub-list
- keepRemainder- if true, any remaining elements are returned as sub-lists. Otherwise they are discarded
- Returns:
- a List containing the data collated into sub-lists
- Throws:
- IllegalArgumentException- if the step is zero.
- Since:
- 2.4.0
 
- 
collateCollates this array into sub-lists.- Parameters:
- self- an array
- size- the length of each sub-list in the returned list
- step- the number of elements to step through for each sub-list
- keepRemainder- if true, any remaining elements are returned as sub-lists. Otherwise they are discarded
- Returns:
- a List containing the array elements collated into sub-lists
- Since:
- 2.5.0
 
- 
collectIterates through this aggregate Object transforming each item into a new value using Closure.IDENTITY as a transformer, basically returning a list of items copied from the original object.assert [1,2,3] == [1,2,3].iterator().collect() - Parameters:
- self- an aggregate Object with an Iterator returning its items
- Returns:
- a Collection of the transformed values
- Since:
- 1.8.5
- See Also:
 
- 
collectIterates through this aggregate Object transforming each item into a new value using thetransformclosure, returning a list of transformed values. Example:def list = [1, 'a', 1.23, true ] def types = list.collect { it.class } assert types == [Integer, String, BigDecimal, Boolean]- Parameters:
- self- an aggregate Object with an Iterator returning its items
- transform- the closure used to transform each item of the aggregate object
- Returns:
- a List of the transformed values
- Since:
- 1.0
 
- 
collectpublic static <T,C extends Collection<T>> C collect(Object self, C collector, Closure<? extends T> transform) Iterates through this aggregate Object transforming each item into a new value using thetransformclosure and adding it to the suppliedcollector.- Parameters:
- self- an aggregate Object with an Iterator returning its items
- collector- the Collection to which the transformed values are added
- transform- the closure used to transform each item of the aggregate object
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.0
 
- 
collectIterates through this Array transforming each item into a new value using thetransformclosure, returning a list of transformed values.- Parameters:
- self- an Array
- transform- the closure used to transform each item of the Array
- Returns:
- a List of the transformed values
- Since:
- 2.5.0
 
- 
collectpublic static <E,T, C collectC extends Collection<T>> (E[] self, C collector, Closure<? extends T> transform) Iterates through this Array transforming each item into a new value using thetransformclosure and adding it to the suppliedcollector.Integer[] nums = [1,2,3] List answer = [] nums.collect(answer) { it * 2 } assert [2,4,6] == answer - Parameters:
- self- an Array
- collector- the Collection to which the transformed values are added
- transform- the closure used to transform each item
- Returns:
- the collector with all transformed values added to it
- Since:
- 2.5.0
 
- 
collectIterates through this Iterator transforming each item into a new value using thetransformclosure, returning a list of transformed values.- Parameters:
- self- an Iterator
- transform- the closure used to transform each item
- Returns:
- a List of the transformed values
- Since:
- 2.5.0
 
- 
collectpublic static <E,T, C collectC extends Collection<T>> (Iterator<E> self, C collector, Closure<? extends T> transform) Iterates through this Iterator transforming each item into a new value using thetransformclosure and adding it to the suppliedcollector.- Parameters:
- self- an Iterator
- collector- the Collection to which the transformed values are added
- transform- the closure used to transform each item
- Returns:
- the collector with all transformed values added to it
- Since:
- 2.5.0
 
- 
collectIterates through this collection transforming each entry into a new value using Closure.IDENTITY as a transformer, basically returning a list of items copied from the original collection.assert [1,2,3] == [1,2,3].collect() - Parameters:
- self- an Iterable
- Returns:
- a List of the transformed values
- Since:
- 2.5.0
- See Also:
 
- 
collectIterates through this Iterable transforming each entry into a new value using thetransformclosure returning a list of transformed values.assert [2,4,6] == [1,2,3].collect { it * 2 }- Parameters:
- self- an Iterable
- transform- the closure used to transform each item of the collection
- Returns:
- a List of the transformed values
- Since:
- 2.5.0
 
- 
collectpublic static <E,T, C collectC extends Collection<T>> (Iterable<E> self, C collector, Closure<? extends T> transform) Iterates through this collection transforming each value into a new value using thetransformclosure and adding it to the suppliedcollector.assert [1,2,3] as HashSet == [2,4,5,6].collect(new HashSet()) { (int)(it / 2) }- Parameters:
- self- an Iterable
- collector- the Collection to which the transformed values are added
- transform- the closure used to transform each item
- Returns:
- the collector with all transformed values added to it
- Since:
- 2.5.0
 
- 
collectNestedRecursively iterates through this collection transforming each non-Collection value into a new value using the closure as a transformer. Returns a potentially nested list of transformed values.assert [2,[4,6],[8],[]] == [1,[2,3],[4],[]].collectNested { it * 2 }- Parameters:
- self- a collection
- transform- the closure used to transform each item of the collection
- Returns:
- the resultant collection
- Since:
- 1.8.1
 
- 
collectNestedRecursively iterates through this Iterable transforming each non-Collection value into a new value using the closure as a transformer. Returns a potentially nested list of transformed values.assert [2,[4,6],[8],[]] == [1,[2,3],[4],[]].collectNested { it * 2 }- Parameters:
- self- an Iterable
- transform- the closure used to transform each item of the Iterable
- Returns:
- the resultant list
- Since:
- 2.2.0
 
- 
collectNestedRecursively iterates through this Iterable transforming each non-Collection value into a new value using thetransformclosure. Returns a potentially nested collection of transformed values.def x = [1,[2,3],[4],[]].collectNested(new Vector()) { it * 2 } assert x == [2,[4,6],[8],[]] assert x instanceof Vector- Parameters:
- self- an Iterable
- collector- an initial Collection to which the transformed values are added
- transform- the closure used to transform each element of the Iterable
- Returns:
- the collector with all transformed values added to it
- Since:
- 2.2.0
 
- 
collectManypublic static <T,E> List<T> collectMany(Iterable<E> self, Closure<? extends Collection<? extends T>> projection) Projects each item from a source Iterable to a collection and concatenates (flattens) the resulting collections into a single list.def nums = 1..10 def squaresAndCubesOfEvens = nums.collectMany{ it % 2 ? [] : [it**2, it**3] } assert squaresAndCubesOfEvens == [4, 8, 16, 64, 36, 216, 64, 512, 100, 1000] def animals = ['CAT', 'DOG', 'ELEPHANT'] as Set def smallAnimals = animals.collectMany{ it.size()>3 ? [] : [it.toLowerCase()] } assert smallAnimals == ['cat', 'dog'] def orig = nums as Set def origPlusIncrements = orig.collectMany{ [it, it+1] } assert origPlusIncrements.size() == orig.size() * 2 assert origPlusIncrements.unique().size() == orig.size() + 1- Parameters:
- self- an Iterable
- projection- a projecting Closure returning a collection of items
- Returns:
- a list created from the projected collections concatenated (flattened) together
- Since:
- 2.2.0
- See Also:
 
- 
collectManypublic static <T,E, C collectManyC extends Collection<T>> (Iterable<E> self, C collector, Closure<? extends Collection<? extends T>> projection) Projects each item from a source collection to a result collection and concatenates (flattens) the resulting collections adding them into thecollector.def animals = ['CAT', 'DOG', 'ELEPHANT'] def smallAnimals = animals.collectMany(['ant', 'bee']){ it.size() > 3 ? [] : [it.toLowerCase()] } assert smallAnimals == ['ant', 'bee', 'cat', 'dog'] def nums = 1..5 def origPlusIncrements = nums.collectMany([] as Set){ [it, it+1] } assert origPlusIncrements.size() == nums.size() + 1 @groovy.transform.TypeChecked void test() { LinkedHashSet<String> lhs = ['abc','def'].collectMany(new LinkedHashSet<>()){ it.iterator().collect() } assert lhs == ['a','b','c','d','e','f'] as Set<String> } test()- Parameters:
- self- an Iterable
- collector- an initial collection to add the projected items to
- projection- a projecting Closure returning a collection of items
- Returns:
- the collector with the projected collections concatenated (flattened) into it
- Since:
- 2.2.0
 
- 
collectManypublic static <T,K, C collectManyV, C extends Collection<T>> (Map<K, V> self, C collector, Closure<? extends Collection<? extends T>> projection) Projects each item from a source map to a result collection and concatenates (flattens) the resulting collections adding them into thecollector.def map = [bread:3, milk:5, butter:2] def result = map.collectMany(['x']){ k, v->if (k.startsWith('b')) k.toList() } assert result == ['x', 'b', 'r', 'e', 'a', 'd', 'b', 'u', 't', 't', 'e', 'r']- Parameters:
- self- a map
- collector- an initial collection to add the projected items to
- projection- a projecting Closure returning a collection of items
- Returns:
- the collector with the projected collections concatenated (flattened) to it
- Since:
- 1.8.8
 
- 
collectManypublic static <T,K, List<T> collectManyV> (Map<K, V> self, Closure<? extends Collection<? extends T>> projection) Projects each item from a source map to a result collection and concatenates (flattens) the resulting collections adding them into a collection.def map = [bread:3, milk:5, butter:2] def result = map.collectMany{ k, v->k.startsWith('b') ? k.toList() : [] } assert result == ['b', 'r', 'e', 'a', 'd', 'b', 'u', 't', 't', 'e', 'r']- Parameters:
- self- a map
- projection- a projecting Closure returning a collection of items
- Returns:
- a list created from the projected collections concatenated (flattened) together
- Since:
- 1.8.8
 
- 
collectMany$$bridge@Deprecated public static <T,K, Collection<T> collectMany$$bridgeV> (Map<K, V> self, Closure<? extends Collection<? extends T>> projection) Deprecated.
- 
collectManypublic static <T,E> List<T> collectMany(E[] self, Closure<? extends Collection<? extends T>> projection) Projects each item from a source array to a collection and concatenates (flattens) the resulting collections into a single list.def nums = [1, 2, 3, 4, 5, 6] as Object[] def squaresAndCubesOfEvens = nums.collectMany{ it % 2 ? [] : [it**2, it**3] } assert squaresAndCubesOfEvens == [4, 8, 16, 64, 36, 216]- Parameters:
- self- an array
- projection- a projecting Closure returning a collection of items
- Returns:
- a list created from the projected collections concatenated (flattened) together
- Since:
- 1.8.1
- See Also:
 
- 
collectManypublic static <T,E, C collectManyC extends Collection<T>> (E[] self, C collector, Closure<? extends Collection<? extends T>> projection) Projects each item from a source array to a collection and concatenates (flattens) the resulting collections into a single list.def nums = [1, 2, 3, 4, 5, 6] as Object[] def squaresAndCubesOfEvens = nums.collectMany{ it % 2 ? [] : [it**2, it**3] } assert squaresAndCubesOfEvens == [4, 8, 16, 64, 36, 216]- Parameters:
- self- an array
- collector- an initial collection to add the projected items to
- projection- a projecting Closure returning a collection of items
- Returns:
- the collector with the projected collections concatenated (flattened) to it
- Since:
- 1.8.1
- See Also:
 
- 
collectManypublic static <T,E, C collectManyC extends Collection<T>> (Iterator<E> self, C collector, Closure<? extends Collection<? extends T>> projection) Projects each item from a source iterator to a collection and concatenates (flattens) the resulting collections into a single list.def numsIter = [1, 2, 3, 4, 5, 6].iterator() def squaresAndCubesOfEvens = numsIter.collectMany{ if (it % 2 == 0) [it**2, it**3] } assert squaresAndCubesOfEvens == [4, 8, 16, 64, 36, 216]- Parameters:
- self- an iterator
- collector- an initial collection to add the projected items to
- projection- a projecting Closure returning a collection of items
- Returns:
- the collector with the projected collections concatenated (flattened) to it
- Since:
- 1.8.1
- See Also:
 
- 
collectManypublic static <T,E> List<T> collectMany(Iterator<E> self, Closure<? extends Collection<? extends T>> projection) Projects each item from a source iterator to a collection and concatenates (flattens) the resulting collections into a single list.def numsIter = [1, 2, 3, 4, 5, 6].iterator() def squaresAndCubesOfEvens = numsIter.collectMany{ it % 2 ? [] : [it**2, it**3] } assert squaresAndCubesOfEvens == [4, 8, 16, 64, 36, 216]- Parameters:
- self- an iterator
- projection- a projecting Closure returning a collection of items
- Returns:
- a list created from the projected collections concatenated (flattened) together
- Since:
- 1.8.1
- See Also:
 
- 
collectpublic static <T,K, C collectV, C extends Collection<T>> (Map<K, V> self, C collector, Closure<? extends T> transform) Iterates through this Map transforming each map entry into a new value using thetransformclosure returning thecollectorwith all transformed values added to it.assert [a:1, b:2].collect( [] as HashSet ) { key, value->key*value } == ["a", "bb"] as Set assert [3:20, 2:30].collect( [] as HashSet ) { entry->entry.key * entry.value } == [60] as Set- Parameters:
- self- a Map
- collector- the Collection to which transformed values are added
- transform- the transformation closure which can take one (Map.Entry) or two (key, value) parameters
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.0
 
- 
collectIterates through this Map transforming each map entry into a new value using thetransformclosure returning a list of transformed values.assert [a:1, b:2].collect { key, value->key*value } == ["a", "bb"] assert [3:20, 2:30].collect { entry->entry.key * entry.value } == [60, 60]- Parameters:
- self- a Map
- transform- the transformation closure which can take one (Map.Entry) or two (key, value) parameters
- Returns:
- the resultant list of transformed values
- Since:
- 1.0
 
- 
collectEntriespublic static <K,V, Map<K,X, Y> V> collectEntries(Map<X, Y> self, Map<K, V> collector, Closure<?> transform) Iterates through this Map transforming each map entry using thetransformclosure returning a map of the transformed entries.assert [a:1, b:2].collectEntries( [:] ) { k, vNote: When using the list-style of result, the behavior is '->[v, k] } == [1:'a', 2:'b'] assert [a:1, b:2].collectEntries( [30:'C'] ) { key, value->[(value*10): key.toUpperCase()] } == [10:'A', 20:'B', 30:'C']def (key, value) = listResultFromClosure'. While we strongly discourage using a list of size other than 2, Groovy's normal semantics apply in this case; throwing away elements after the second one and using null for the key or value for the case of a shortened list. If your collector Map doesn't support null keys or values, you might get a runtime error, e.g. NullPointerException or IllegalArgumentException.- Parameters:
- self- a Map
- collector- the Map into which the transformed entries are put
- transform- the closure used for transforming, which can take one (Map.Entry) or two (key, value) parameters and should return a Map.Entry, a Map or a two-element list containing the resulting key and value
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.7.9
- See Also:
 
- 
collectEntriesIterates through this Map transforming each entry using thetransformclosure and returning a map of the transformed entries.assert [a:1, b:2].collectEntries { key, valueNote: When using the list-style of result, the behavior is '->[value, key] } == [1:'a', 2:'b'] assert [a:1, b:2].collectEntries { key, value->[(value*10): key.toUpperCase()] } == [10:'A', 20:'B']def (key, value) = listResultFromClosure'. While we strongly discourage using a list of size other than 2, Groovy's normal semantics apply in this case; throwing away elements after the second one and using null for the key or value for the case of a shortened list. If your Map doesn't support null keys or values, you might get a runtime error, e.g. NullPointerException or IllegalArgumentException.- Parameters:
- self- a Map
- transform- the closure used for transforming, which can take one (Map.Entry) or two (key, value) parameters and should return a Map.Entry, a Map or a two-element list containing the resulting key and value
- Returns:
- a Map of the transformed entries
- Since:
- 1.7.9
- See Also:
 
- 
collectEntriesA variant of collectEntries for Iterators.- Parameters:
- self- an Iterator
- transform- the closure used for transforming, which has an item from self as the parameter and should return a Map.Entry, a Map or a two-element list containing the resulting key and value
- Returns:
- a Map of the transformed entries
- Since:
- 1.8.7
- See Also:
 
- 
collectEntriesIterates through this Iterable transforming each item using thetransformclosure and returning a map of the resulting transformed entries.def letters = "abc" // collect letters with index using list style assert (0..2).collectEntries { indexNote: When using the list-style of result, the behavior is '->[index, letters[index]] } == [0:'a', 1:'b', 2:'c'] // collect letters with index using map style assert (0..2).collectEntries { index->[(index): letters[index]] } == [0:'a', 1:'b', 2:'c']def (key, value) = listResultFromClosure'. While we strongly discourage using a list of size other than 2, Groovy's normal semantics apply in this case; throwing away elements after the second one and using null for the key or value for the case of a shortened list.- Parameters:
- self- an Iterable
- transform- the closure used for transforming, which has an item from self as the parameter and should return a Map.Entry, a Map or a two-element list containing the resulting key and value
- Returns:
- a Map of the transformed entries
- Since:
- 1.8.7
- See Also:
 
- 
collectEntriesA variant of collectEntries for Iterators using the identity closure as the transform.- Parameters:
- self- an Iterator
- Returns:
- a Map of the transformed entries
- Since:
- 1.8.7
- See Also:
 
- 
collectEntriesA variant of collectEntries for Iterable objects using the identity closure as the transform. The source Iterable should contain a list of[key, value]tuples orMap.Entryobjects.def nums = [1, 10, 100, 1000] def tuples = nums.collect{ [it, it.toString().size()] } assert tuples == [[1, 1], [10, 2], [100, 3], [1000, 4]] def map = tuples.collectEntries() assert map == [1:1, 10:2, 100:3, 1000:4]- Parameters:
- self- an Iterable
- Returns:
- a Map of the transformed entries
- Since:
- 1.8.7
- See Also:
 
- 
collectEntriespublic static <K,V, Map<K,E> V> collectEntries(Iterator<E> self, Map<K, V> collector, Closure<?> transform) A variant of collectEntries for Iterators using a supplied map as the destination of transformed entries.- Parameters:
- self- an Iterator
- collector- the Map into which the transformed entries are put
- transform- the closure used for transforming, which has an item from self as the parameter and should return a Map.Entry, a Map or a two-element list containing the resulting key and value
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.8.7
 
- 
collectEntriespublic static <K,V, Map<K,E> V> collectEntries(Iterable<E> self, Map<K, V> collector, Closure<?> transform) Iterates through this Iterable transforming each item using the closure as a transformer into a map entry, returning the supplied map with all the transformed entries added to it.def letters = "abc" // collect letters with index assert (0..2).collectEntries( [:] ) { indexNote: When using the list-style of result, the behavior is '->[index, letters[index]] } == [0:'a', 1:'b', 2:'c'] assert (0..2).collectEntries( [4:'d'] ) { index->[(index+1): letters[index]] } == [1:'a', 2:'b', 3:'c', 4:'d']def (key, value) = listResultFromClosure'. While we strongly discourage using a list of size other than 2, Groovy's normal semantics apply in this case; throwing away elements after the second one and using null for the key or value for the case of a shortened list. If your collector Map doesn't support null keys or values, you might get a runtime error, e.g. NullPointerException or IllegalArgumentException.- Parameters:
- self- an Iterable
- collector- the Map into which the transformed entries are put
- transform- the closure used for transforming, which has an item from self as the parameter and should return a Map.Entry, a Map or a two-element list containing the resulting key and value
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.8.7
- See Also:
 
- 
collectEntriesA variant of collectEntries for Iterators using the identity closure as the transform and a supplied map as the destination of transformed entries.- Parameters:
- self- an Iterator
- collector- the Map into which the transformed entries are put
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.8.7
- See Also:
 
- 
collectEntriesA variant of collectEntries for Iterables using the identity closure as the transform and a supplied map as the destination of transformed entries.- Parameters:
- self- an Iterable
- collector- the Map into which the transformed entries are put
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.8.7
- See Also:
 
- 
collectEntriesIterates through this array transforming each item using thetransformclosure and returning a map of the resulting transformed entries.def letters = "abc" def nums = [0, 1, 2] as Integer[] // collect letters with index assert nums.collectEntries( [:] ) { indexNote: When using the list-style of result, the behavior is '->[index, letters[index]] } == [0:'a', 1:'b', 2:'c'] assert nums.collectEntries( [4:'d'] ) { index->[(index+1): letters[index]] } == [1:'a', 2:'b', 3:'c', 4:'d']def (key, value) = listResultFromClosure'. While we strongly discourage using a list of size other than 2, Groovy's normal semantics apply in this case; throwing away elements after the second one and using null for the key or value for the case of a shortened list. If your collector Map doesn't support null keys or values, you might get a runtime error, e.g. NullPointerException or IllegalArgumentException.- Parameters:
- self- an array
- collector- the Map into which the transformed entries are put
- transform- the closure used for transforming, which has an item from self as the parameter and should return a Map.Entry, a Map or a two-element list containing the resulting key and value
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.7.9
- See Also:
 
- 
collectEntriesA variant of collectEntries using the identity closure as the transform.- Parameters:
- self- an array
- collector- the Map into which the transformed entries are put
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.8.5
- See Also:
 
- 
collectEntriesIterates through this array transforming each item using thetransformclosure and returning a map of the resulting transformed entries.def letters = "abc" def nums = [0, 1, 2] as Integer[] // collect letters with index using list style assert nums.collectEntries { indexNote: When using the list-style of result, the behavior is '->[index, letters[index]] } == [0:'a', 1:'b', 2:'c'] // collect letters with index using map style assert nums.collectEntries { index->[(index): letters[index]] } == [0:'a', 1:'b', 2:'c']def (key, value) = listResultFromClosure'. While we strongly discourage using a list of size other than 2, Groovy's normal semantics apply in this case; throwing away elements after the second one and using null for the key or value for the case of a shortened list.- Parameters:
- self- a Collection
- transform- the closure used for transforming, which has an item from self as the parameter and should return a Map.Entry, a Map or a two-element list containing the resulting key and value
- Returns:
- a Map of the transformed entries
- Since:
- 1.7.9
- See Also:
 
- 
collectEntriesA variant of collectEntries using the identity closure as the transform.- Parameters:
- self- an array
- Returns:
- the collector with all transformed values added to it
- Since:
- 1.8.5
- See Also:
 
- 
findFinds the first value matching the closure condition.def numbers = [1, 2, 3] def result = numbers.find { it>1} assert result == 2- Parameters:
- self- an Object with an iterator returning its values
- closure- a closure condition
- Returns:
- the first Object found or null if none was found
- Since:
- 1.0
 
- 
findFinds the first item matching the IDENTITY Closure (i.e. matching Groovy truth).Example: def items = [null, 0, 0.0, false, '', [], 42, 43] assert items.find() == 42 - Parameters:
- self- an Object with an Iterator returning its values
- Returns:
- the first Object found or null if none was found
- Since:
- 1.8.1
- See Also:
 
- 
findFinds the first value matching the closure condition. Example:def list = [1,2,3] assert 2 == list.find { it>1 }- Parameters:
- self- a Collection
- closure- a closure condition
- Returns:
- the first Object found, in the order of the collections iterator, or null if no element matches
- Since:
- 1.0
 
- 
findFinds the first element in the array that matches the given closure condition. Example:def list = [1,2,3] as Integer[] assert 2 == list.find { it>1 } assert null == list.find { it>5 }- Parameters:
- self- an Array
- condition- a closure condition
- Returns:
- the first element from the array that matches the condition or null if no element matches
- Since:
- 2.0
 
- 
findFinds the first item matching the IDENTITY Closure (i.e. matching Groovy truth).Example: def items = [null, 0, 0.0, false, '', [], 42, 43] assert items.find() == 42 - Parameters:
- self- a Collection
- Returns:
- the first Object found or null if none was found
- Since:
- 1.8.1
- See Also:
 
- 
findResultTreats the object as iterable, iterating through the values it represents and returns the first non-null result obtained from calling the closure, otherwise returns null.int[] numbers = [1, 2, 3] assert numbers.findResult { if(it>1) return it } == 2 assert numbers.findResult { if(it>4) return it } == null- Parameters:
- self- an Object with an iterator returning its values
- condition- a closure that returns a non-null value to indicate that processing should stop and the value should be returned
- Returns:
- the first non-null result of the closure
- Since:
- 1.7.5
 
- 
findResultTreats the object as iterable, iterating through the values it represents and returns the first non-null value, otherwise returns null.class Foo { List items Iterator iterator() { items.iterator() } } assert new Foo(items: [null, 2, 4]).findResult() == 2 assert new Foo(items: [null, null]).findResult() == null- Parameters:
- self- an Object with an iterator returning its values
- Returns:
- the first non-null result of the closure
- Since:
- 4.0.9
 
- 
findResultTreats the object as iterable, iterating through the values it represents and returns the first non-null result obtained from calling the closure, otherwise returns the defaultResult.int[] numbers = [1, 2, 3] assert numbers.findResult(5) { if(it>1) return it } == 2 assert numbers.findResult(5) { if(it>4) return it } == 5- Parameters:
- self- an Object with an iterator returning its values
- defaultResult- an Object that should be returned if all closure results are null
- condition- a closure that returns a non-null value to indicate that processing should stop and the value should be returned
- Returns:
- the first non-null result of the closure, otherwise the default value
- Since:
- 1.7.5
 
- 
findResultTreats the object as iterable, iterating through the values it represents and returns the first non-null result, otherwise returns the defaultResult.class Foo { List items Iterator iterator() { items.iterator() } } assert new Foo(items: [null, 2, 4]).findResult(5) == 2 assert new Foo(items: [null, null]).findResult(5) == 5- Parameters:
- self- an Object with an iterator returning its values
- defaultResult- an Object that should be returned if all elements are null
- Returns:
- the first non-null element, otherwise the default value
- Since:
- 4.0.9
 
- 
findResultpublic static <S,T, T findResultU extends T, V extends T> (Iterator<S> self, U defaultResult, Closure<V> condition) Iterates through the Iterator calling the given closure condition for each item but stopping once the first non-null result is found and returning that result. If all are null, the defaultResult is returned.Examples: def iter = [1,2,3].iterator() assert "Found 2" == iter.findResult("default") { it>1 ? "Found $it" : null } assert "default" == iter.findResult("default") { it>3 ? "Found $it" : null }- Parameters:
- self- an Iterator
- defaultResult- an Object that should be returned if all closure results are null
- condition- a closure that returns a non-null value to indicate that processing should stop and the value should be returned
- Returns:
- the first non-null result from calling the closure, or the defaultValue
- Since:
- 2.5.0
 
- 
findResultIterates through the Iterator stopping once the first non-null result is found and returning that result. If all are null, the defaultResult is returned.Examples: assert [null, 1, 2].iterator().findResult('default') == 1 assert [null, null].findResult('default') == 'default'- Parameters:
- self- an Iterator
- defaultResult- an Object that should be returned if all elements are null
- Returns:
- the first non-null result from the iterator, or the defaultValue
- Since:
- 4.0.9
 
- 
findResultIterates through the Iterator calling the given closure condition for each item but stopping once the first non-null result is found and returning that result. If all results are null, null is returned.- Parameters:
- self- an Iterator
- condition- a closure that returns a non-null value to indicate that processing should stop and the value should be returned
- Returns:
- the first non-null result from calling the closure, or null
- Since:
- 2.5.0
 
- 
findResultIterates through the Iterator stopping once the first non-null result is found and returning that result. If all results are null, null is returned.- Parameters:
- self- an Iterator
- Returns:
- the first non-null result from the iterator, or null
- Since:
- 4.0.9
 
- 
findResultpublic static <S,T, T findResultU extends T, V extends T> (Iterable<S> self, U defaultResult, Closure<V> condition) Iterates through the Iterable calling the given closure condition for each item but stopping once the first non-null result is found and returning that result. If all are null, the defaultResult is returned.Examples: def list = [1,2,3] assert "Found 2" == list.findResult("default") { it>1 ? "Found $it" : null } assert "default" == list.findResult("default") { it>3 ? "Found $it" : null }- Parameters:
- self- an Iterable
- defaultResult- an Object that should be returned if all closure results are null
- condition- a closure that returns a non-null value to indicate that processing should stop and the value should be returned
- Returns:
- the first non-null result from calling the closure, or the defaultValue
- Since:
- 2.5.0
 
- 
findResultIterates through the Iterable calling the given closure condition for each item but stopping once the first non-null result is found and returning that result. If all are null, the defaultResult is returned.Examples: assert [null, 1, 2].findResult('default') == 1 assert [null, null].findResult('default') == 'default'- Parameters:
- self- an Iterable
- defaultResult- an Object that should be returned if all elements in the iterable are null
- Returns:
- the first non-null element from the iterable, or the defaultValue
- Since:
- 4.0.9
 
- 
findResultIterates through the Iterable calling the given closure condition for each item but stopping once the first non-null result is found and returning that result. If all results are null, null is returned.- Parameters:
- self- an Iterable
- condition- a closure that returns a non-null value to indicate that processing should stop and the value should be returned
- Returns:
- the first non-null result from calling the closure, or null
- Since:
- 2.5.0
 
- 
findResultIterates through the Iterable stopping once the first non-null result is found and returning that result. If all results are null, null is returned.- Parameters:
- self- an Iterable
- Returns:
- the first non-null element from the iterable, or null
- Since:
- 4.0.9
 
- 
findResultpublic static <S,T, T findResultU extends T, V extends T> (S[] self, U defaultResult, Closure<V> condition) Iterates through the Array calling the given closure condition for each item but stopping once the first non-null result is found and returning that result. If all are null, the defaultResult is returned.- Parameters:
- self- an Array
- defaultResult- an Object that should be returned if all closure results are null
- condition- a closure that returns a non-null value to indicate that processing should stop and the value should be returned
- Returns:
- the first non-null result from calling the closure, or the defaultValue
- Since:
- 2.5.0
 
- 
findResultpublic static <T,U extends T, T findResultV extends T> (U[] self, V defaultResult) Iterates through the Array stopping once the first non-null result is found and returning that result. If all are null, the defaultResult is returned.- Parameters:
- self- an Array
- defaultResult- an Object that should be returned if all elements are null
- Returns:
- the first non-null result from calling the closure, or the defaultValue
- Since:
- 4.0.9
 
- 
findResultIterates through the Array calling the given closure condition for each item but stopping once the first non-null result is found and returning that result. If all results are null, null is returned.- Parameters:
- self- an Array
- condition- a closure that returns a non-null value to indicate that processing should stop and the value should be returned
- Returns:
- the first non-null result from calling the closure, or null
- Since:
- 2.5.0
 
- 
findResultpublic static <T> T findResult(T[] self) Iterates through the Array stopping once the first non-null result is found and returning that result. If all results are null, null is returned.- Parameters:
- self- an Array
- Returns:
- the first non-null result from calling the closure, or null
- Since:
- 4.0.9
 
- 
findResultReturns the first non-null closure result found by passing each map entry to the closure, otherwise null is returned. If the closure takes two parameters, the entry key and value are passed. If the closure takes one parameter, the Map.Entry object is passed.assert "Found b:3" == [a:1, b:3].findResult { if (it.value == 3) return "Found ${it.key}:${it.value}" } assert null == [a:1, b:3].findResult { if (it.value == 9) return "Found ${it.key}:${it.value}" } assert "Found a:1" == [a:1, b:3].findResult { k, v->if (k.size() + v == 2) return "Found $k:$v" }- Parameters:
- self- a Map
- condition- a 1 or 2 arg Closure that returns a non-null value when processing should stop and a value should be returned
- Returns:
- the first non-null result collected by calling the closure, or null if no such result was found
- Since:
- 1.7.5
 
- 
findResultpublic static <T,U extends T, T findResultV extends T, A, B> (Map<A, B> self, U defaultResult, Closure<V> condition) Returns the first non-null closure result found by passing each map entry to the closure, otherwise the defaultResult is returned. If the closure takes two parameters, the entry key and value are passed. If the closure takes one parameter, the Map.Entry object is passed.assert "Found b:3" == [a:1, b:3].findResult("default") { if (it.value == 3) return "Found ${it.key}:${it.value}" } assert "default" == [a:1, b:3].findResult("default") { if (it.value == 9) return "Found ${it.key}:${it.value}" } assert "Found a:1" == [a:1, b:3].findResult("default") { k, v->if (k.size() + v == 2) return "Found $k:$v" }- Parameters:
- self- a Map
- defaultResult- an Object that should be returned if all closure results are null
- condition- a 1 or 2 arg Closure that returns a non-null value when processing should stop and a value should be returned
- Returns:
- the first non-null result collected by calling the closure, or the defaultResult if no such result was found
- Since:
- 1.7.5
 
- 
findResultsIterates through the Iterable transforming items using the supplied closure and collecting any non-null results.Example: def list = [1,2,3] def result = list.findResults { it>1 ? "Found $it" : null } assert result == ["Found 2", "Found 3"]- Parameters:
- self- an Iterable
- filteringTransform- a Closure that should return either a non-null transformed value or null for items which should be discarded
- Returns:
- the list of non-null transformed values
- Since:
- 2.2.0
 
- 
findResultsIterates through the Iterable collecting any non-null results.Example: assert [1, null, 2, null, 3].findResults() == [1, 2, 3] - Parameters:
- self- an Iterable
- Returns:
- the list of non-null values
- Since:
- 4.0.9
 
- 
findResultsIterates through the Iterator transforming items using the supplied closure and collecting any non-null results.- Parameters:
- self- an Iterator
- filteringTransform- a Closure that should return either a non-null transformed value or null for items which should be discarded
- Returns:
- the list of non-null transformed values
- Since:
- 2.5.0
 
- 
findResultsIterates through the Iterator collecting any non-null results.- Parameters:
- self- an Iterator
- Returns:
- the list of non-null values
- Since:
- 4.0.9
 
- 
findResultsIterates through the Array transforming items using the supplied closure and collecting any non-null results.- Parameters:
- self- an Array
- filteringTransform- a Closure that should return either a non-null transformed value or null for items which should be discarded
- Returns:
- the list of non-null transformed values
- Since:
- 2.5.0
 
- 
findResultsIterates through the Array collecting any non-null results.- Parameters:
- self- an Array
- Returns:
- the list of non-null values
- Since:
- 4.0.9
 
- 
findResultsIterates through the map transforming items using the supplied closure and collecting any non-null results. If the closure takes two parameters, the entry key and value are passed. If the closure takes one parameter, the Map.Entry object is passed.Example: def map = [a:1, b:2, hi:2, cat:3, dog:2] def result = map.findResults { k, v->k.size() == v ? "Found $k:$v" : null } assert result == ["Found a:1", "Found hi:2", "Found cat:3"]- Parameters:
- self- a Map
- filteringTransform- a 1 or 2 arg Closure that should return either a non-null transformed value or null for items which should be discarded
- Returns:
- the list of non-null transformed values
- Since:
- 1.8.1
 
- 
findFinds the first entry matching the closure condition. If the closure takes two parameters, the entry key and value are passed. If the closure takes one parameter, the Map.Entry object is passed.assert [a:1, b:3].find { it.value == 3 }.key == "b"- Parameters:
- self- a Map
- closure- a 1 or 2 arg Closure condition
- Returns:
- the first Object found
- Since:
- 1.0
 
- 
findAllFinds all entries matching the closure condition. If the closure takes one parameter then it will be passed the Map.Entry. Otherwise if the closure should take two parameters, which will be the key and the value.If the selfmap is one of TreeMap, LinkedHashMap, Hashtable or Properties, the returned Map will preserve that type, otherwise a HashMap will be returned.Example usage: def result = [a:1, b:2, c:4, d:5].findAll { it.value % 2 == 0 } assert result.every { it instanceof Map.Entry } assert result*.key == ["b", "c"] assert result*.value == [2, 4]- Parameters:
- self- a Map
- closure- a 1 or 2 arg Closure condition applying on the entries
- Returns:
- a new subMap
- Since:
- 1.0
 
- 
findAllFinds all values matching the closure condition.assert ([2,4] as Set) == ([1,2,3,4] as Set).findAll { it % 2 == 0 }- Parameters:
- self- a Set
- closure- a closure condition
- Returns:
- a Set of matching values
- Since:
- 2.4.0
 
- 
findAllFinds all values matching the closure condition.assert [2,4] == [1,2,3,4].findAll { it % 2 == 0 }- Parameters:
- self- a List
- closure- a closure condition
- Returns:
- a List of matching values
- Since:
- 2.4.0
 
- 
findAllFinds all values matching the closure condition.assert [2,4] == [1,2,3,4].findAll { it % 2 == 0 }- Parameters:
- self- a Collection
- closure- a closure condition
- Returns:
- a Collection of matching values
- Since:
- 1.5.6
 
- 
findAllFinds all elements of the array matching the given Closure condition.def items = [1,2,3,4] as Integer[] assert [2,4] == items.findAll { it % 2 == 0 }- Parameters:
- self- an array
- condition- a closure condition
- Returns:
- a list of matching values
- Since:
- 2.0
 
- 
findAll$$bridgeDeprecated.
- 
findAllFinds the items matching the IDENTITY Closure (i.e. matching Groovy truth).Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] as Set assert items.findAll() == [1, 2, true, 'foo', [4, 5]] as Set - Parameters:
- self- a Set
- Returns:
- a Set of the truthy values
- Since:
- 2.4.0
- See Also:
 
- 
findAllFinds the items matching the IDENTITY Closure (i.e. matching Groovy truth).Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] assert items.findAll() == [1, 2, true, 'foo', [4, 5]] - Parameters:
- self- a List
- Returns:
- a List of the truthy values
- Since:
- 2.4.0
- See Also:
 
- 
findAllFinds the items matching the IDENTITY Closure (i.e. matching Groovy truth).Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] assert items.findAll() == [1, 2, true, 'foo', [4, 5]] - Parameters:
- self- a Collection
- Returns:
- a Collection of the truthy values
- Since:
- 1.8.1
- See Also:
 
- 
findAllFinds the elements of the array matching the IDENTITY Closure (i.e. matching Groovy truth).Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] as Object[] assert items.findAll() == [1, 2, true, 'foo', [4, 5]] - Parameters:
- self- an array
- Returns:
- a List of the truthy values
- Since:
- 2.0
- See Also:
 
- 
findAll$$bridgeDeprecated.
- 
findAllFinds all items matching the closure condition.- Parameters:
- self- an Object with an Iterator returning its values
- closure- a closure condition
- Returns:
- a List of the values found
- Since:
- 1.6.0
 
- 
findAll$$bridgeDeprecated.
- 
findAllFinds all items matching the IDENTITY Closure (i.e. matching Groovy truth).Example: def items = [1, 2, 0, false, true, '', 'foo', [], [4, 5], null] assert items.findAll() == [1, 2, true, 'foo', [4, 5]] - Parameters:
- self- an Object with an Iterator returning its values
- Returns:
- a List of the truthy values
- Since:
- 1.8.1
- See Also:
 
- 
findAll$$bridgeDeprecated.
- 
containsReturns true if this iterable contains the item.- Parameters:
- self- an Iterable to be checked for containment
- item- an Object to be checked for containment in this iterable
- Returns:
- true if this iterable contains the item
- Since:
- 2.4.0
- See Also:
 
- 
containsAllReturns true if this iterable contains all the elements in the specified array.- Parameters:
- self- an Iterable to be checked for containment
- items- array to be checked for containment in this iterable
- Returns:
- true if this collection contains all the elements in the specified array
- Since:
- 2.4.0
- See Also:
 
- 
removeAllModifies this collection by removing its elements that are contained within the specified object array. See alsofindAllandgrepwhen wanting to produce a new list containing items which don't match some criteria while leaving the original collection unchanged.- Parameters:
- self- a Collection to be modified
- items- array containing elements to be removed from this collection
- Returns:
- true if this collection changed as a result of the call
- Since:
- 1.7.2
- See Also:
 
- 
retainAllModifies this collection so that it retains only its elements that are contained in the specified array. In other words, removes from this collection all of its elements that are not contained in the specified array. See alsogrepandfindAllwhen wanting to produce a new list containing items which match some specified items but leaving the original collection unchanged.- Parameters:
- self- a Collection to be modified
- items- array containing elements to be retained from this collection
- Returns:
- true if this collection changed as a result of the call
- Since:
- 1.7.2
- See Also:
 
- 
retainAllModifies this collection so that it retains only its elements that are matched according to the specified closure condition. In other words, removes from this collection all of its elements that don't match.def list = ['a', 'b'] list.retainAll { it == 'b' } assert list == ['b']See alsofindAllandgrepwhen wanting to produce a new list containing items which match some criteria but leaving the original collection unchanged.- Parameters:
- self- a Collection to be modified
- condition- a closure condition
- Returns:
- true if this collection changed as a result of the call
- Since:
- 1.7.2
- See Also:
 
- 
retainAllModifies this map so that it retains only its elements that are matched according to the specified closure condition. In other words, removes from this map all of its elements that don't match. If the closure takes one parameter then it will be passed theMap.Entry. Otherwise the closure should take two parameters, which will be the key and the value.def map = [a:1, b:2] map.retainAll { k,vSee also->k == 'b' } assert map == [b:2]findAllwhen wanting to produce a new map containing items which match some criteria but leaving the original map unchanged.- Parameters:
- self- a Map to be modified
- condition- a 1 or 2 arg Closure condition applying on the entries
- Returns:
- true if this map changed as a result of the call
- Since:
- 2.5.0
 
- 
removeAllModifies this collection by removing the elements that are matched according to the specified closure condition.def list = ['a', 'b'] list.removeAll { it == 'b' } assert list == ['a']See alsofindAllandgrepwhen wanting to produce a new list containing items which match some criteria but leaving the original collection unchanged.- Parameters:
- self- a Collection to be modified
- condition- a closure condition
- Returns:
- true if this collection changed as a result of the call
- Since:
- 1.7.2
- See Also:
 
- 
removeAllModifies this map by removing the elements that are matched according to the specified closure condition. If the closure takes one parameter then it will be passed theMap.Entry. Otherwise the closure should take two parameters, which will be the key and the value.def map = [a:1, b:2] map.removeAll { k,vSee also->k == 'b' } assert map == [a:1]findAllwhen wanting to produce a new map containing items which match some criteria but leaving the original map unchanged.- Parameters:
- self- a Map to be modified
- condition- a 1 or 2 arg Closure condition applying on the entries
- Returns:
- true if this map changed as a result of the call
- Since:
- 2.5.0
 
- 
addAllModifies the collection by adding all the elements in the specified array to the collection. The behavior of this operation is undefined if the specified array is modified while the operation is in progress. See alsoplusor the '+' operator if wanting to produce a new collection containing additional items but while leaving the original collection unchanged.- Parameters:
- self- a Collection to be modified
- items- array containing elements to be added to this collection
- Returns:
- true if this collection changed as a result of the call
- Since:
- 1.7.2
- See Also:
 
- 
addAllModifies this list by inserting all the elements in the specified array into the list at the specified position. Shifts the element currently at that position (if any) and any subsequent elements to the right (increases their indices). The new elements will appear in this list in the order that they occur in the array. The behavior of this operation is undefined if the specified array is modified while the operation is in progress. See alsoplusfor similar functionality with copy semantics, i.e. which produces a new list after adding the additional items at the specified position but leaves the original list unchanged.- Parameters:
- self- a list to be modified
- items- array containing elements to be added to this collection
- index- index at which to insert the first element from the specified array
- Returns:
- true if this collection changed as a result of the call
- Since:
- 1.7.2
- See Also:
 
- 
splitSplits all items into two lists based on the closure condition. The first list contains all items matching the closure expression. The second list all those that don't.- Parameters:
- self- an Object with an Iterator returning its values
- closure- a closure condition
- Returns:
- a List whose first item is the accepted values and whose second item is the rejected values
- Since:
- 1.6.0
 
- 
splitSplits all items into two collections based on the closure condition. The first list contains all items which match the closure expression. The second list all those that don't.Example usage: assert [[2,4],[1,3]] == [1,2,3,4].split { it % 2 == 0 }- Parameters:
- self- a Collection of values
- closure- a closure condition
- Returns:
- a List whose first item is the accepted values and whose second item is the rejected values
- Since:
- 1.6.0
 
- 
splitSplits all items into two collections based on the closure condition. The first list contains all items which match the closure expression. The second list all those that don't.- Parameters:
- self- an Array
- closure- a closure condition
- Returns:
- a List whose first item is the accepted values and whose second item is the rejected values
- Since:
- 2.5.0
 
- 
splitSplits all items into two collections based on the closure condition. The first list contains all items which match the closure expression. The second list all those that don't.Example usage: assert [[2,4],[1,3]] == [1,2,3,4].split { it % 2 == 0 }- Parameters:
- self- a List of values
- closure- a closure condition
- Returns:
- a List whose first item is the accepted values and whose second item is the rejected values
- Since:
- 2.4.0
 
- 
splitSplits all items into two collections based on the closure condition. The first list contains all items which match the closure expression. The second list all those that don't.Example usage: assert [[2,4] as Set, [1,3] as Set] == ([1,2,3,4] as Set).split { it % 2 == 0 }- Parameters:
- self- a Set of values
- closure- a closure condition
- Returns:
- a List whose first item is the accepted values and whose second item is the rejected values
- Since:
- 2.4.0
 
- 
combinationsAdds GroovyCollections#combinations(Iterable) as a method on Iterables.Example usage: assert [['a', 'b'],[1, 2, 3]].combinations() == [['a', 1], ['b', 1], ['a', 2], ['b', 2], ['a', 3], ['b', 3]] - Parameters:
- self- an Iterable of collections
- Returns:
- a List of the combinations found
- Since:
- 2.2.0
- See Also:
 
- 
combinationsAdds GroovyCollections#combinations(Iterable, Closure) as a method on collections.Example usage: assert [[2, 3],[4, 5, 6]].combinations {x,y->x*y } == [8, 12, 10, 15, 12, 18]- Parameters:
- self- a Collection of lists
- function- a closure to be called on each combination
- Returns:
- a List of the results of applying the closure to each combination found
- Since:
- 2.2.0
- See Also:
 
- 
eachCombinationApplies a function on each combination of the input lists.Example usage: [[2, 3],[4, 5, 6]].eachCombination { println "Found $it" }- Parameters:
- self- a Collection of lists
- function- a closure to be called on each combination
- Since:
- 2.2.0
- See Also:
 
- 
subsequencesFinds all non-null subsequences of a list.Example usage: def result = [1, 2, 3].subsequences() assert result == [[1, 2, 3], [1, 3], [2, 3], [1, 2], [1], [2], [3]] as Set - Parameters:
- self- the List of items
- Returns:
- the subsequences from the list
- Since:
- 1.7.0
 
- 
permutationsFinds all permutations of an iterable.Example usage: def result = [1, 2, 3].permutations() assert result == [[3, 2, 1], [3, 1, 2], [1, 3, 2], [2, 3, 1], [2, 1, 3], [1, 2, 3]] as Set - Parameters:
- self- the Iterable of items
- Returns:
- the permutations from the list
- Since:
- 1.7.0
 
- 
permutationsFinds all permutations of an iterable, applies a function to each permutation and collects the result into a list.Example usage: Set result = [1, 2, 3].permutations { it.collect { v->2*v }} assert result == [[6, 4, 2], [6, 2, 4], [2, 6, 4], [4, 6, 2], [4, 2, 6], [2, 4, 6]] as Set- Parameters:
- self- the Iterable of items
- function- the function to apply on each permutation
- Returns:
- the list of results of the application of the function on each permutation
- Since:
- 2.2.0
 
- 
eachPermutationIterates over all permutations of a collection, running a closure for each iteration.Example usage: def permutations = [] [1, 2, 3].eachPermutation{ permutations << it } assert permutations == [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]- Parameters:
- self- the Collection of items
- closure- the closure to call for each permutation
- Returns:
- the permutations from the list
- Since:
- 1.7.0
 
- 
transposeAdds GroovyCollections#transpose(List) as a method on lists. A Transpose Function takes a collection of columns and returns a collection of rows. The first row consists of the first element from each column. Successive rows are constructed similarly.Example usage: def result = [['a', 'b'], [1, 2]].transpose() assert result == [['a', 1], ['b', 2]] def result = [['a', 'b'], [1, 2], [3, 4]].transpose() assert result == [['a', 1, 3], ['b', 2, 4]] - Parameters:
- self- a List of lists
- Returns:
- a List of the transposed lists
- Since:
- 1.5.0
- See Also:
 
- 
transposepublic static int[][] transpose(int[][] self) A transpose method for 2D int arrays.Example usage: int[][] nums = [[10, 15, 20], [30, 35, 40]] int[][] expected = [[10, 30], [15, 35], [20, 40]] assert nums.transpose() == expected - Parameters:
- self- a 2D int array
- Returns:
- the transposed 2D int array
- Since:
- 3.0.8
 
- 
transposepublic static long[][] transpose(long[][] self) A transpose method for 2D long arrays.- Parameters:
- self- a 2D long array
- Returns:
- the transposed 2D long array
- Since:
- 3.0.8
 
- 
transposepublic static double[][] transpose(double[][] self) A transpose method for 2D double arrays.- Parameters:
- self- a 2D double array
- Returns:
- the transposed 2D double array
- Since:
- 3.0.8
 
- 
groupBySorts all Iterable members into groups determined by the supplied mapping closure. The closure should return the key that this item should be grouped by. The returned LinkedHashMap will have an entry for each distinct key returned from the closure, with each value being a list of items for that group.Example usage: assert [0:[2,4,6], 1:[1,3,5]] == [1,2,3,4,5,6].groupBy { it % 2 }- Parameters:
- self- a collection to group
- closure- a closure mapping entries on keys
- Returns:
- a new Map grouped by keys
- Since:
- 2.2.0
 
- 
groupBySorts all array members into groups determined by the supplied mapping closure. The closure should return the key that this item should be grouped by. The returned LinkedHashMap will have an entry for each distinct key returned from the closure, with each value being a list of items for that group.Example usage: Integer[] items = [1,2,3,4,5,6] assert [0:[2,4,6], 1:[1,3,5]] == items.groupBy { it % 2 }- Parameters:
- self- an array to group
- closure- a closure mapping entries on keys
- Returns:
- a new Map grouped by keys
- Since:
- 2.2.0
- See Also:
 
- 
groupBySorts all Iterable members into (sub)groups determined by the supplied mapping closures. Each closure should return the key that this item should be grouped by. The returned LinkedHashMap will have an entry for each distinct 'key path' returned from the closures, with each value being a list of items for that 'group path'. Example usage:def result = [1,2,3,4,5,6].groupBy({ it % 2 }, { itAnother example:<4 }) assert result == [1:[(true):[1, 3], (false):[5]], 0:[(true):[2], (false):[4, 6]]]def sql = groovy.sql.Sql.newInstance(/* ... */) def data = sql.rows("SELECT * FROM a_table").groupBy({ it.column1 }, { it.column2 }, { it.column3 }) if (data.val1.val2.val3) { // there exists a record where: // a_table.column1 == val1 // a_table.column2 == val2, and // a_table.column3 == val3 } else { // there is no such record }If an empty array of closures is supplied the IDENTITY Closure will be used.- Parameters:
- self- a collection to group
- closures- an array of closures, each mapping entries on keys
- Returns:
- a new Map grouped by keys on each criterion
- Since:
- 2.2.0
- See Also:
 
- 
groupBySorts all array members into (sub)groups determined by the supplied mapping closures as per the Iterable variant of this method.- Parameters:
- self- an array to group
- closures- an array of closures, each mapping entries on keys
- Returns:
- a new Map grouped by keys on each criterion
- Since:
- 2.2.0
- See Also:
 
- 
groupBySorts all Iterable members into (sub)groups determined by the supplied mapping closures. Each closure should return the key that this item should be grouped by. The returned LinkedHashMap will have an entry for each distinct 'key path' returned from the closures, with each value being a list of items for that 'group path'. Example usage:def result = [1,2,3,4,5,6].groupBy([{ it % 2 }, { itAnother example:<4 }]) assert result == [1:[(true):[1, 3], (false):[5]], 0:[(true):[2], (false):[4, 6]]]def sql = groovy.sql.Sql.newInstance(/* ... */) def data = sql.rows("SELECT * FROM a_table").groupBy([{ it.column1 }, { it.column2 }, { it.column3 }]) if (data.val1.val2.val3) { // there exists a record where: // a_table.column1 == val1 // a_table.column2 == val2, and // a_table.column3 == val3 } else { // there is no such record }If an empty list of closures is supplied the IDENTITY Closure will be used.- Parameters:
- self- a collection to group
- closures- a list of closures, each mapping entries on keys
- Returns:
- a new Map grouped by keys on each criterion
- Since:
- 2.2.0
- See Also:
 
- 
groupBySorts all array members into (sub)groups determined by the supplied mapping closures as per the list variant of this method.- Parameters:
- self- an array to group
- closures- a list of closures, each mapping entries on keys
- Returns:
- a new Map grouped by keys on each criterion
- Since:
- 2.2.0
- See Also:
 
- 
countBySorts all collection members into groups determined by the supplied mapping closure and counts the group size. The closure should return the key that each item should be grouped by. The returned Map will have an entry for each distinct key returned from the closure, with each value being the frequency of items occurring for that group.Example usage: assert [0:2, 1:3] == [1,2,3,4,5].countBy { it % 2 }- Parameters:
- self- a collection to group and count
- closure- a closure mapping items to the frequency keys
- Returns:
- a new Map grouped by keys with frequency counts
- Since:
- 2.2.0
 
- 
countBySorts all array members into groups determined by the supplied mapping closure and counts the group size. The closure should return the key that each item should be grouped by. The returned Map will have an entry for each distinct key returned from the closure, with each value being the frequency of items occurring for that group.Example usage: assert ([1,2,2,2,3] as Object[]).countBy{ it % 2 } == [1:2, 0:3]- Parameters:
- self- an array to group and count
- closure- a closure mapping items to the frequency keys
- Returns:
- a new Map grouped by keys with frequency counts
- Since:
- 1.8.0
- See Also:
 
- 
countBySorts all iterator items into groups determined by the supplied mapping closure and counts the group size. The closure should return the key that each item should be grouped by. The returned Map will have an entry for each distinct key returned from the closure, with each value being the frequency of items occurring for that group.Example usage: assert [1,2,2,2,3].toSet().iterator().countBy{ it % 2 } == [1:2, 0:1]- Parameters:
- self- an iterator to group and count
- closure- a closure mapping items to the frequency keys
- Returns:
- a new Map grouped by keys with frequency counts
- Since:
- 1.8.0
 
- 
groupEntriesBypublic static <G,K, Map<G,V> List<Map.Entry<K, groupEntriesByV>>> (Map<K, V> self, Closure<G> closure) Groups all map entries into groups determined by the supplied mapping closure. The closure will be passed a Map.Entry or key and value (depending on the number of parameters the closure accepts) and should return the key that each item should be grouped under. The resulting map will have an entry for each 'group' key returned by the closure, with values being the list of map entries that belong to each group. (If instead of a list of map entries, you want an actual map use {code}groupBy{code}.)def result = [a:1,b:2,c:3,d:4,e:5,f:6].groupEntriesBy { it.value % 2 } assert result[0]*.key == ["b", "d", "f"] assert result[1]*.value == [1, 3, 5]- Parameters:
- self- a map to group
- closure- a 1 or 2 arg Closure mapping entries on keys
- Returns:
- a new Map grouped by keys
- Since:
- 1.5.2
 
- 
groupByGroups the members of a map into sub maps determined by the supplied mapping closure. The closure will be passed a Map.Entry or key and value (depending on the number of parameters the closure accepts) and should return the key that each item should be grouped under. The resulting map will have an entry for each 'group' key returned by the closure, with values being the map members from the original map that belong to each group. (If instead of a map, you want a list of map entries use {code}groupEntriesBy{code}.)If the selfmap is one of TreeMap, Hashtable or Properties, the returned Map will preserve that type, otherwise a LinkedHashMap will be returned.def result = [a:1,b:2,c:3,d:4,e:5,f:6].groupBy { it.value % 2 } assert result == [0:[b:2, d:4, f:6], 1:[a:1, c:3, e:5]]- Parameters:
- self- a map to group
- closure- a closure mapping entries on keys
- Returns:
- a new Map grouped by keys
- Since:
- 1.0
 
- 
groupByGroups the members of a map into sub maps determined by the supplied mapping closures. Each closure will be passed a Map.Entry or key and value (depending on the number of parameters the closure accepts) and should return the key that each item should be grouped under. The resulting map will have an entry for each 'group path' returned by all closures, with values being the map members from the original map that belong to each such 'group path'. If theselfmap is one of TreeMap, Hashtable, or Properties, the returned Map will preserve that type, otherwise a LinkedHashMap will be returned.def result = [a:1,b:2,c:3,d:4,e:5,f:6].groupBy({ it.value % 2 }, { it.key.next() }) assert result == [1:[b:[a:1], d:[c:3], f:[e:5]], 0:[c:[b:2], e:[d:4], g:[f:6]]]If an empty array of closures is supplied the IDENTITY Closure will be used.- Parameters:
- self- a map to group
- closures- an array of closures that map entries on keys
- Returns:
- a new map grouped by keys on each criterion
- Since:
- 1.8.1
- See Also:
 
- 
groupByGroups the members of a map into sub maps determined by the supplied mapping closures. Each closure will be passed a Map.Entry or key and value (depending on the number of parameters the closure accepts) and should return the key that each item should be grouped under. The resulting map will have an entry for each 'group path' returned by all closures, with values being the map members from the original map that belong to each such 'group path'. If theselfmap is one of TreeMap, Hashtable, or Properties, the returned Map will preserve that type, otherwise a LinkedHashMap will be returned.def result = [a:1,b:2,c:3,d:4,e:5,f:6].groupBy([{ it.value % 2 }, { it.key.next() }]) assert result == [1:[b:[a:1], d:[c:3], f:[e:5]], 0:[c:[b:2], e:[d:4], g:[f:6]]]If an empty list of closures is supplied the IDENTITY Closure will be used.- Parameters:
- self- a map to group
- closures- a list of closures that map entries on keys
- Returns:
- a new map grouped by keys on each criterion
- Since:
- 1.8.1
- See Also:
 
- 
countByGroups the members of a map into groups determined by the supplied mapping closure and counts the frequency of the created groups. The closure will be passed a Map.Entry or key and value (depending on the number of parameters the closure accepts) and should return the key that each item should be grouped under. The resulting map will have an entry for each 'group' key returned by the closure, with values being the frequency counts for that 'group'.def result = [a:1,b:2,c:3,d:4,e:5].countBy { it.value % 2 } assert result == [0:2, 1:3]- Parameters:
- self- a map to group and count
- closure- a closure mapping entries to frequency count keys
- Returns:
- a new Map grouped by keys with frequency counts
- Since:
- 1.8.0
 
- 
groupAnswerGroups the current element according to the value- Parameters:
- answer- the map containing the results
- element- the element to be placed
- value- the value according to which the element will be placed
- Since:
- 1.5.0
 
- 
callClosureForMapEntry
- 
callClosureForLine
- 
callClosureForMapEntryAndCounter
- 
injectPerforms the same function as the version of inject that takes an initial value, but uses the head of the Collection as the initial value, and iterates over the tail.assert 1 * 2 * 3 * 4 == [ 1, 2, 3, 4 ].inject { acc, val->acc * val } assert ['b'] == [['a','b'], ['b','c'], ['d','b']].inject { acc, val->acc.intersect( val ) } LinkedHashSet set = [ 't', 'i', 'm' ] assert 'tim' == set.inject { a, b->a + b }- Parameters:
- self- a Collection
- closure- a closure
- Returns:
- the result of the last closure call
- Throws:
- NoSuchElementException- if the collection is empty.
- Since:
- 1.8.7
- See Also:
 
- 
injectpublic static <E,T, T injectU extends T, V extends T> (Collection<E> self, U initialValue, Closure<V> closure) Iterates through the given Collection, passing in the initial value to the 2-arg closure along with the first item. The result is passed back (injected) into the closure along with the second item. The new result is injected back into the closure along with the third item and so on until the entire collection has been used. Also known as foldLeft or reduce in functional parlance. Examples:assert 1*1*2*3*4 == [1,2,3,4].inject(1) { acc, valVisual representation of the last example above:->acc * val } assert 0+1+2+3+4 == [1,2,3,4].inject(0) { acc, val->acc + val } assert 'The quick brown fox' == ['quick', 'brown', 'fox'].inject('The') { acc, val->acc + ' ' + val } assert 'bat' == ['rat', 'bat', 'cat'].inject('zzz') { min, next->next<min ? next : min } def max = { a, b->[a, b].max() } def animals = ['bat', 'rat', 'cat'] assert 'rat' == animals.inject('aaa', max)initVal animals[0] v v max('aaa', 'bat')=>'bat' animals[1] v v max('bat', 'rat')=>'rat' animals[2] v v max('rat', 'cat')=>'rat'- Parameters:
- self- a Collection
- initialValue- some initial value
- closure- a closure
- Returns:
- the result of the last closure call
- Since:
- 1.0
 
- 
injectpublic static <K,V, T injectT, U extends T, W extends T> (Map<K, V> self, U initialValue, Closure<W> closure) Iterates through the given Map, passing in the initial value to the 2-arg Closure along with the first item (or 3-arg Closure along with the first key and value). The result is passed back (injected) into the closure along with the second item. The new result is injected back into the closure along with the third item and so on until the entire collection has been used. Also known as foldLeft or reduce in functional parlance. Examples:def map = [a:1, b:2, c:3] assert map.inject([]) { list, k, v->list + [k] * v } == ['a', 'b', 'b', 'c', 'c', 'c']- Parameters:
- self- a Map
- initialValue- some initial value
- closure- a 2 or 3 arg Closure
- Returns:
- the result of the last closure call
- Since:
- 1.8.1
 
- 
injectpublic static <E,T, T injectU extends T, V extends T> (Iterator<E> self, U initialValue, Closure<V> closure) Iterates through the given Iterator, passing in the initial value to the closure along with the first item. The result is passed back (injected) into the closure along with the second item. The new result is injected back into the closure along with the third item and so on until the Iterator has been expired of values. Also known as foldLeft in functional parlance.- Parameters:
- self- an Iterator
- initialValue- some initial value
- closure- a closure
- Returns:
- the result of the last closure call
- Since:
- 1.5.0
- See Also:
 
- 
injectIterates through the given Object, passing in the first value to the closure along with the first item. The result is passed back (injected) into the closure along with the second item. The new result is injected back into the closure along with the third item and so on until further iteration of the object is not possible. Also known as foldLeft in functional parlance.- Parameters:
- self- an Object
- closure- a closure
- Returns:
- the result of the last closure call
- Throws:
- NoSuchElementException- if the collection is empty.
- Since:
- 1.8.7
- See Also:
 
- 
injectpublic static <T,U extends T, T injectV extends T> (Object self, U initialValue, Closure<V> closure) Iterates through the given Object, passing in the initial value to the closure along with the first item. The result is passed back (injected) into the closure along with the second item. The new result is injected back into the closure along with the third item and so on until further iteration of the object is not possible. Also known as foldLeft in functional parlance.- Parameters:
- self- an Object
- initialValue- some initial value
- closure- a closure
- Returns:
- the result of the last closure call
- Since:
- 1.5.0
- See Also:
 
- 
injectIterates through the given array as with inject(Object[],initialValue,closure), but using the first element of the array as the initialValue, and then iterating the remaining elements of the array.- Parameters:
- self- an Object[]
- closure- a closure
- Returns:
- the result of the last closure call
- Throws:
- NoSuchElementException- if the array is empty.
- Since:
- 1.8.7
- See Also:
 
- 
injectpublic static <E,T, T injectU extends T, V extends T> (E[] self, U initialValue, Closure<V> closure) Iterates through the given array, passing in the initial value to the closure along with the first item. The result is passed back (injected) into the closure along with the second item. The new result is injected back into the closure along with the third item and so on until all elements of the array have been used. Also known as foldLeft in functional parlance.- Parameters:
- self- an Object[]
- initialValue- some initial value
- closure- a closure
- Returns:
- the result of the last closure call
- Since:
- 1.5.0
- See Also:
 
- 
sumSums the items in an Iterable. This is equivalent to invoking the "plus" method on all items in the Iterable.assert 1+2+3+4 == [1,2,3,4].sum() - Parameters:
- self- Iterable of values to add together
- Returns:
- The sum of all the items
- Since:
- 2.2.0
- See Also:
 
- 
sumSums the items in an array. This is equivalent to invoking the "plus" method on all items in the array.- Parameters:
- self- The array of values to add together
- Returns:
- The sum of all the items
- Since:
- 1.7.1
- See Also:
 
- 
sumSums the items from an Iterator. This is equivalent to invoking the "plus" method on all items from the Iterator. The iterator will become exhausted of elements after determining the sum value.- Parameters:
- self- an Iterator for the values to add together
- Returns:
- The sum of all the items
- Since:
- 1.5.5
 
- 
sumpublic static byte sum(byte[] self) Sums the items in an array.assert (1+2+3+4 as byte) == ([1,2,3,4] as byte[]).sum() - Parameters:
- self- The array of values to add together
- Returns:
- The sum of all the items
- Since:
- 2.4.2
 
- 
sumpublic static short sum(short[] self) Sums the items in an array.assert (1+2+3+4 as short) == ([1,2,3,4] as short[]).sum() - Parameters:
- self- The array of values to add together
- Returns:
- The sum of all the items
- Since:
- 2.4.2
 
- 
sumpublic static int sum(int[] self) Sums the items in an array.assert 1+2+3+4 == ([1,2,3,4] as int[]).sum() - Parameters:
- self- The array of values to add together
- Returns:
- The sum of all the items
- Since:
- 2.4.2
 
- 
sumpublic static long sum(long[] self) Sums the items in an array.assert (1+2+3+4 as long) == ([1,2,3,4] as long[]).sum() - Parameters:
- self- The array of values to add together
- Returns:
- The sum of all the items
- Since:
- 2.4.2
 
- 
sumpublic static char sum(char[] self) Sums the items in an array.assert (1+2+3+4 as char) == ([1,2,3,4] as char[]).sum() - Parameters:
- self- The array of values to add together
- Returns:
- The sum of all the items
- Since:
- 2.4.2
 
- 
sumpublic static float sum(float[] self) Sums the items in an array.assert (1+2+3+4 as float) == ([1,2,3,4] as float[]).sum() - Parameters:
- self- The array of values to add together
- Returns:
- The sum of all the items
- Since:
- 2.4.2
 
- 
sumpublic static double sum(double[] self) Sums the items in an array.assert (1+2+3+4 as double) == ([1,2,3,4] as double[]).sum() - Parameters:
- self- The array of values to add together
- Returns:
- The sum of all the items
- Since:
- 2.4.2
 
- 
sumSums the items in an Iterable, adding the result to some initial value.assert 5+1+2+3+4 == [1,2,3,4].sum(5) - Parameters:
- self- an Iterable of values to sum
- initialValue- the items in the collection will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 2.2.0
- See Also:
 
- 
sumSums the items in an array, adding the result to some initial value.- Parameters:
- self- an array of values to sum
- initialValue- the items in the array will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 1.7.1
 
- 
sumSums the items from an Iterator, adding the result to some initial value. This is equivalent to invoking the "plus" method on all items from the Iterator. The iterator will become exhausted of elements after determining the sum value.- Parameters:
- self- an Iterator for the values to add together
- initialValue- the items in the collection will be summed to this initial value
- Returns:
- The sum of all the items
- Since:
- 1.5.5
 
- 
sumpublic static byte sum(byte[] self, byte initialValue) Sums the items in an array, adding the result to some initial value.assert (5+1+2+3+4 as byte) == ([1,2,3,4] as byte[]).sum(5 as byte) - Parameters:
- self- an array of values to sum
- initialValue- the items in the array will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 2.4.2
 
- 
sumpublic static short sum(short[] self, short initialValue) Sums the items in an array, adding the result to some initial value.assert (5+1+2+3+4 as short) == ([1,2,3,4] as short[]).sum(5 as short) - Parameters:
- self- an array of values to sum
- initialValue- the items in the array will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 2.4.2
 
- 
sumpublic static int sum(int[] self, int initialValue) Sums the items in an array, adding the result to some initial value.assert 5+1+2+3+4 == ([1,2,3,4] as int[]).sum(5) - Parameters:
- self- an array of values to sum
- initialValue- the items in the array will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 2.4.2
 
- 
sumpublic static long sum(long[] self, long initialValue) Sums the items in an array, adding the result to some initial value.assert (5+1+2+3+4 as long) == ([1,2,3,4] as long[]).sum(5) - Parameters:
- self- an array of values to sum
- initialValue- the items in the array will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 2.4.2
 
- 
sumpublic static char sum(char[] self, char initialValue) Sums the items in an array, adding the result to some initial value.assert (5+1+2+3+4 as char) == ([1,2,3,4] as char[]).sum(5 as char) - Parameters:
- self- an array of values to sum
- initialValue- the items in the array will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 2.4.2
 
- 
sumpublic static float sum(float[] self, float initialValue) Sums the items in an array, adding the result to some initial value.assert (5+1+2+3+4 as float) == ([1,2,3,4] as float[]).sum(5) - Parameters:
- self- an array of values to sum
- initialValue- the items in the array will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 2.4.2
 
- 
sumpublic static double sum(double[] self, double initialValue) Sums the items in an array, adding the result to some initial value.assert (5+1+2+3+4 as double) == ([1,2,3,4] as double[]).sum(5) - Parameters:
- self- an array of values to sum
- initialValue- the items in the array will be summed to this initial value
- Returns:
- The sum of all the items.
- Since:
- 2.4.2
 
- 
sumSums the result of applying a closure to each item of an Iterable.coll.sum(closure)is equivalent to:coll.collect(closure).sum().assert 4+6+10+12 == [2,3,5,6].sum { it * 2 }- Parameters:
- self- an Iterable
- closure- a single parameter closure that returns a (typically) numeric value.
- Returns:
- The sum of the values returned by applying the closure to each item of the Iterable.
- Since:
- 2.2.0
 
- 
sumSums the result of applying a closure to each item of an array.array.sum(closure)is equivalent to:array.collect(closure).sum().- Parameters:
- self- An array
- closure- a single parameter closure that returns a (typically) numeric value.
- Returns:
- The sum of the values returned by applying the closure to each item of the array.
- Since:
- 1.7.1
 
- 
sumSums the result of applying a closure to each item returned from an iterator.iter.sum(closure)is equivalent to:iter.collect(closure).sum(). The iterator will become exhausted of elements after determining the sum value.- Parameters:
- self- An Iterator
- closure- a single parameter closure that returns a (typically) numeric value.
- Returns:
- The sum of the values returned by applying the closure to each item from the Iterator.
- Since:
- 1.7.1
 
- 
sumSums the result of applying a closure to each item of an Iterable to some initial value.iter.sum(initVal, closure)is equivalent to:iter.collect(closure).sum(initVal).assert 50+4+6+10+12 == [2,3,5,6].sum(50) { it * 2 }- Parameters:
- self- an Iterable
- closure- a single parameter closure that returns a (typically) numeric value.
- initialValue- the closure results will be summed to this initial value
- Returns:
- The sum of the values returned by applying the closure to each item of the collection.
- Since:
- 1.5.0
 
- 
sumSums the result of applying a closure to each item of an array to some initial value.array.sum(initVal, closure)is equivalent to:array.collect(closure).sum(initVal).- Parameters:
- self- an array
- closure- a single parameter closure that returns a (typically) numeric value.
- initialValue- the closure results will be summed to this initial value
- Returns:
- The sum of the values returned by applying the closure to each item of the array.
- Since:
- 1.7.1
 
- 
sumSums the result of applying a closure to each item of an Iterator to some initial value.iter.sum(initVal, closure)is equivalent to:iter.collect(closure).sum(initVal). The iterator will become exhausted of elements after determining the sum value.- Parameters:
- self- an Iterator
- closure- a single parameter closure that returns a (typically) numeric value.
- initialValue- the closure results will be summed to this initial value
- Returns:
- The sum of the values returned by applying the closure to each item from the Iterator.
- Since:
- 1.7.1
 
- 
averageAverages the items in an Iterable. This is equivalent to invoking the "plus" method on all items in the Iterable and then dividing by the total count using the "div" method for the resulting sum.assert 3 == [1, 2, 6].average() - Parameters:
- self- Iterable of values to average
- Returns:
- The average of all the items
- Since:
- 3.0.0
- See Also:
 
- 
averageAverages the items in an array. This is equivalent to invoking the "plus" method on all items in the array and then dividing by the total count using the "div" method for the resulting sum.assert 3 == ([1, 2, 6] as Integer[]).average() - Parameters:
- self- The array of values to average
- Returns:
- The average of all the items
- Since:
- 3.0.0
- See Also:
 
- 
averageAverages the items from an Iterator. This is equivalent to invoking the "plus" method on all items in the array and then dividing by the total count using the "div" method for the resulting sum. The iterator will become exhausted of elements after determining the average value. While most frequently used with aggregates of numbers,averagewill work with any class supportingplusanddiv, e.g.:class Stars { int numStars = 0 String toString() { '*' * numStars } Stars plus(Stars other) { new Stars(numStars: numStars + other.numStars) } Stars div(Number divisor) { int newSize = numStars.intdiv(divisor) new Stars(numStars: newSize) } } def stars = [new Stars(numStars: 1), new Stars(numStars: 3)] assert stars*.toString() == ['*', '***'] assert stars.average().toString() == '**'- Parameters:
- self- an Iterator for the values to average
- Returns:
- The average of all the items
- Since:
- 3.0.0
 
- 
averageCalculates the average of the bytes in the array.assert 5.0G == ([2,4,6,8] as byte[]).average() - Parameters:
- self- The array of values to calculate the average of
- Returns:
- The average of the items
- Since:
- 3.0.0
 
- 
averageCalculates the average of the shorts in the array.assert 5.0G == ([2,4,6,8] as short[]).average() - Parameters:
- self- The array of values to calculate the average of
- Returns:
- The average of the items
- Since:
- 3.0.0
 
- 
averageCalculates the average of the ints in the array.assert 5.0G == ([2,4,6,8] as int[]).average() - Parameters:
- self- The array of values to calculate the average of
- Returns:
- The average of the items
- Since:
- 3.0.0
 
- 
averageCalculates the average of the longs in the array.assert 5.0G == ([2,4,6,8] as long[]).average() - Parameters:
- self- The array of values to calculate the average of
- Returns:
- The average of the items
- Since:
- 3.0.0
 
- 
averagepublic static double average(float[] self) Calculates the average of the floats in the array.assert 5.0d == ([2,4,6,8] as float[]).average() - Parameters:
- self- The array of values to calculate the average of
- Returns:
- The average of the items
- Since:
- 3.0.0
 
- 
averagepublic static double average(double[] self) Calculates the average of the doubles in the array.assert 5.0d == ([2,4,6,8] as double[]).average() - Parameters:
- self- The array of values to calculate the average of
- Returns:
- The average of the items
- Since:
- 3.0.0
 
- 
averageAverages the result of applying a closure to each item of an Iterable.iter.average(closure)is equivalent to:iter.collect(closure).average().assert 20 == [1, 3].average { it * 10 } assert 3 == ['to', 'from'].average { it.size() }- Parameters:
- self- an Iterable
- closure- a single parameter closure that returns a (typically) numeric value.
- Returns:
- The average of the values returned by applying the closure to each item of the Iterable.
- Since:
- 3.0.0
 
- 
averageAverages the result of applying a closure to each item of an array.array.average(closure)is equivalent to:array.collect(closure).average().def (nums, strings) = [[1, 3] as Integer[], ['to', 'from'] as String[]] assert 20 == nums.average { it * 10 } assert 3 == strings.average { it.size() } assert 3 == strings.average (String::size)- Parameters:
- self- An array
- closure- a single parameter closure that returns a (typically) numeric value.
- Returns:
- The average of the values returned by applying the closure to each item of the array.
- Since:
- 3.0.0
 
- 
averageAverages the result of applying a closure to each item returned from an iterator.iter.average(closure)is equivalent to:iter.collect(closure).average(). The iterator will become exhausted of elements after determining the average value.- Parameters:
- self- An Iterator
- closure- a single parameter closure that returns a (typically) numeric value.
- Returns:
- The average of the values returned by applying the closure to each item from the Iterator.
- Since:
- 3.0.0
 
- 
joinConcatenates thetoString()representation of each item from the iterator, with the given String as a separator between each item. The iterator will become exhausted of elements after determining the resulting conjoined value.- Parameters:
- self- an Iterator of items
- separator- a String separator
- Returns:
- the joined String
- Since:
- 1.5.5
 
- 
joinConcatenates thetoString()representation of each item in this Iterable, with the given String as a separator between each item.assert "1, 2, 3" == [1,2,3].join(", ")- Parameters:
- self- an Iterable of objects
- separator- a String separator
- Returns:
- the joined String
- Since:
- 1.0
 
- 
joinConcatenates thetoString()representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of Object
- separator- a String separator
- Returns:
- the joined String
- Since:
- 1.0
 
- 
joinConcatenates the string representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of boolean
- separator- a String separator
- Returns:
- the joined String
- Since:
- 2.4.1
 
- 
joinConcatenates the string representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of byte
- separator- a String separator
- Returns:
- the joined String
- Since:
- 2.4.1
 
- 
joinConcatenates the string representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of char
- separator- a String separator
- Returns:
- the joined String
- Since:
- 2.4.1
 
- 
joinConcatenates the string representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of double
- separator- a String separator
- Returns:
- the joined String
- Since:
- 2.4.1
 
- 
joinConcatenates the string representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of float
- separator- a String separator
- Returns:
- the joined String
- Since:
- 2.4.1
 
- 
joinConcatenates the string representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of int
- separator- a String separator
- Returns:
- the joined String
- Since:
- 2.4.1
 
- 
joinConcatenates the string representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of long
- separator- a String separator
- Returns:
- the joined String
- Since:
- 2.4.1
 
- 
joinConcatenates the string representation of each item in this array, with the given String as a separator between each item.- Parameters:
- self- an array of short
- separator- a String separator
- Returns:
- the joined String
- Since:
- 2.4.1
 
- 
minAdds min() method to Collection objects.assert 2 == [4,2,5].min() - Parameters:
- self- a Collection
- Returns:
- the minimum value
- Since:
- 1.0
- See Also:
 
- 
minAdds min() method to Iterator objects. The iterator will become exhausted of elements after determining the minimum value.- Parameters:
- self- an Iterator
- Returns:
- the minimum value
- Since:
- 1.5.5
- See Also:
 
- 
minpublic static <T> T min(T[] self) Adds min() method to Object arrays.- Parameters:
- self- an array
- Returns:
- the minimum value
- Since:
- 1.5.5
- See Also:
 
- 
minpublic static int min(int[] self) Adds min() method to int arrays. Example usage:int[] nums = [10, 20, 30] assert 10 == nums.min() - Parameters:
- self- an int array
- Returns:
- the minimum value
- Since:
- 3.0.8
- See Also:
 
- 
minpublic static long min(long[] self) Adds min() method to long arrays.- Parameters:
- self- a long array
- Returns:
- the minimum value
- Since:
- 3.0.8
- See Also:
 
- 
minpublic static double min(double[] self) Adds min() method to double arrays.- Parameters:
- self- a double array
- Returns:
- the minimum value
- Since:
- 3.0.8
- See Also:
 
- 
minSelects the minimum value found in the Iterable using the given comparator.assert "hi" == ["hello","hi","hey"].min( { a, b->a.length()<=>b.length() } as Comparator )- Parameters:
- self- an Iterable
- comparator- a Comparator
- Returns:
- the minimum value or null for an empty Iterable
- Since:
- 2.2.0
- See Also:
 
- 
minSelects the minimum value found from the Iterator using the given comparator.- Parameters:
- self- an Iterator
- comparator- a Comparator
- Returns:
- the minimum value
- Since:
- 1.5.5
 
- 
minSelects the minimum value found from the Object array using the given comparator.- Parameters:
- self- an array
- comparator- a Comparator
- Returns:
- the minimum value
- Since:
- 1.5.5
- See Also:
 
- 
minSelects the item in the iterable which when passed as a parameter to the supplied closure returns the minimum value. A null return value represents the least possible return value. If more than one item has the minimum value, an arbitrary choice is made between the items having the minimum value.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. assert "hi" == ["hello","hi","hey"].min { it.length() }def lastDigit = { a, b->a % 10<=>b % 10 } assert [19, 55, 91].min(lastDigit) == 91def pets = ['dog', 'cat', 'anaconda'] def shortestName = pets.min{ it.size() } // one of 'dog' or 'cat' assert shortestName.size() == 3- Parameters:
- self- an Iterable
- closure- a 1 or 2 arg Closure used to determine the correct ordering
- Returns:
- an item from the Iterable having the minimum value returned by calling the supplied closure with that item as parameter or null for an empty Iterable
- Since:
- 1.0
- See Also:
 
- 
minSelects an entry in the map having the minimum calculated value as determined by the supplied closure. If more than one entry has the minimum value, an arbitrary choice is made between the entries having the minimum value.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. def zoo = [monkeys:6, lions:5, tigers:7] def leastCommonEntry = zoo.min{ it.value } assert leastCommonEntry.value == 5 def mostCommonEntry = zoo.min{ a, bEdge case for multiple min values:->b.value<=>a.value } // double negative! assert mostCommonEntry.value == 7def zoo = [monkeys:6, lions:5, tigers:7] def lastCharOfName = { e->e.key[-1] } def ans = zoo.min(lastCharOfName) // some random entry assert lastCharOfName(ans) == 's'- Parameters:
- self- a Map
- closure- a 1 or 2 arg Closure used to determine the correct ordering
- Returns:
- the Map.Entry having the minimum value as determined by the closure
- Since:
- 1.7.6
 
- 
maxSelects an entry in the map having the maximum calculated value as determined by the supplied closure. If more than one entry has the maximum value, an arbitrary choice is made between the entries having the maximum value.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. An example: def zoo = [monkeys:6, lions:5, tigers:7] def mostCommonEntry = zoo.max{ it.value } assert mostCommonEntry.value == 7 def leastCommonEntry = zoo.max{ a, bEdge case for multiple max values:->b.value<=>a.value } // double negative! assert leastCommonEntry.value == 5def zoo = [monkeys:6, lions:5, tigers:7] def lengthOfNamePlusNumber = { e->e.key.size() + e.value } def ans = zoo.max(lengthOfNamePlusNumber) // one of [monkeys:6, tigers:7] assert lengthOfNamePlusNumber(ans) == 13- Parameters:
- self- a Map
- closure- a 1 or 2 arg Closure used to determine the correct ordering
- Returns:
- the Map.Entry having the maximum value as determined by the closure
- Since:
- 1.7.6
 
- 
minSelects the minimum value found from the Iterator using the closure to determine the correct ordering. The iterator will become exhausted of elements after this operation.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. - Parameters:
- self- an Iterator
- closure- a Closure used to determine the correct ordering
- Returns:
- the minimum value
- Since:
- 1.5.5
 
- 
minSelects the minimum value found from the Object array using the closure to determine the correct ordering.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. - Parameters:
- self- an array
- closure- a Closure used to determine the correct ordering
- Returns:
- the minimum value
- Since:
- 1.5.5
- See Also:
 
- 
maxAdds max() method to Iterable objects.assert 5 == [2,3,1,5,4].max() - Parameters:
- self- an Iterable
- Returns:
- the maximum value
- Since:
- 2.2.0
- See Also:
 
- 
maxAdds max() method to Iterator objects. The iterator will become exhausted of elements after determining the maximum value.- Parameters:
- self- an Iterator
- Returns:
- the maximum value
- Since:
- 1.5.5
 
- 
maxpublic static <T> T max(T[] self) Adds max() method to Object arrays.- Parameters:
- self- an array
- Returns:
- the maximum value
- Since:
- 1.5.5
- See Also:
 
- 
maxpublic static int max(int[] self) Adds max() method to int arrays.- Parameters:
- self- an int array
- Returns:
- the maximum value
- Since:
- 3.0.8
- See Also:
 
- 
maxpublic static long max(long[] self) Adds max() method to long arrays.- Parameters:
- self- a long array
- Returns:
- the maximum value
- Since:
- 3.0.8
- See Also:
 
- 
maxpublic static double max(double[] self) Adds max() method to double arrays. Example usage:double[] nums = [1.1d, 2.2d, 3.3d] assert 3.3d == nums.max() - Parameters:
- self- a double array
- Returns:
- the maximum value
- Since:
- 3.0.8
- See Also:
 
- 
maxSelects the item in the iterable which when passed as a parameter to the supplied closure returns the maximum value. A null return value represents the least possible return value, so any item for which the supplied closure returns null, won't be selected (unless all items return null). If more than one item has the maximum value, an arbitrary choice is made between the items having the maximum value.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. assert "hello" == ["hello","hi","hey"].max { it.length() }assert "hello" == ["hello","hi","hey"].max { a, b->a.length()<=>b.length() }def pets = ['dog', 'elephant', 'anaconda'] def longestName = pets.max{ it.size() } // one of 'elephant' or 'anaconda' assert longestName.size() == 8- Parameters:
- self- an Iterable
- closure- a 1 or 2 arg Closure used to determine the correct ordering
- Returns:
- an item from the Iterable having the maximum value returned by calling the supplied closure with that item as parameter or null for an empty Iterable
- Since:
- 2.2.0
 
- 
maxSelects the maximum value found from the Iterator using the closure to determine the correct ordering. The iterator will become exhausted of elements after this operation.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. - Parameters:
- self- an Iterator
- closure- a Closure used to determine the correct ordering
- Returns:
- the maximum value
- Since:
- 1.5.5
 
- 
maxSelects the maximum value found from the Object array using the closure to determine the correct ordering.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. - Parameters:
- self- an array
- closure- a Closure used to determine the correct ordering
- Returns:
- the maximum value
- Since:
- 1.5.5
- See Also:
 
- 
maxSelects the maximum value found in the Iterable using the given comparator.assert "hello" == ["hello","hi","hey"].max( { a, b->a.length()<=>b.length() } as Comparator )- Parameters:
- self- an Iterable
- comparator- a Comparator
- Returns:
- the maximum value or null for an empty Iterable
- Since:
- 2.2.0
- See Also:
 
- 
maxSelects the maximum value found from the Iterator using the given comparator.- Parameters:
- self- an Iterator
- comparator- a Comparator
- Returns:
- the maximum value
- Since:
- 1.5.5
 
- 
maxSelects the maximum value found from the Object array using the given comparator.- Parameters:
- self- an array
- comparator- a Comparator
- Returns:
- the maximum value
- Since:
- 1.5.5
- See Also:
 
- 
getIndicesReturns indices of the collection.Example: assert 0..2 == [5, 6, 7].indices - Parameters:
- self- a collection
- Returns:
- an index range
- Since:
- 2.4.0
 
- 
getIndicesReturns indices of the array.Example: String[] letters = ['a', 'b', 'c', 'd'] assert 0..<4 == letters.indices- Parameters:
- self- an array
- Returns:
- an index range
- Since:
- 2.4.0
 
- 
getIndicesReturns indices of the boolean array.- Since:
- 3.0.8
- See Also:
 
- 
getIndicesReturns indices of the byte array.- Since:
- 3.0.8
- See Also:
 
- 
getIndicesReturns indices of the char array.- Since:
- 3.0.8
- See Also:
 
- 
getIndicesReturns indices of the double array.- Since:
- 3.0.8
- See Also:
 
- 
getIndicesReturns indices of the float array.- Since:
- 3.0.8
- See Also:
 
- 
getIndicesReturns indices of the int array.- Since:
- 3.0.8
- See Also:
 
- 
getIndicesReturns indices of the long array.- Since:
- 3.0.8
- See Also:
 
- 
getIndicesReturns indices of the short array.- Since:
- 3.0.8
- See Also:
 
- 
sizeProvide the standard Groovysize()method forIterator. The iterator will become exhausted of elements after determining the size value.- Parameters:
- self- an Iterator
- Returns:
- the length of the Iterator
- Since:
- 1.5.5
 
- 
sizeProvide the standard Groovysize()method forIterable.def items = [1, 2, 3] def iterable = { [ hasNext:{ !items.isEmpty() }, next:{ items.pop() } ] as Iterator } as Iterable assert iterable.size() == 3- Parameters:
- self- an Iterable
- Returns:
- the length of the Iterable
- Since:
- 2.3.8
 
- 
sizeProvide the standard Groovysize()method for an array.- Parameters:
- self- an Array of objects
- Returns:
- the size (length) of the Array
- Since:
- 1.0
 
- 
isEmptyCheck whether anIterablehas elementsdef items = [1] def iterable = { [ hasNext:{ !items.isEmpty() }, next:{ items.pop() } ] as Iterator } as Iterable assert !iterable.isEmpty() iterable.iterator().next() assert iterable.isEmpty()- Parameters:
- self- an Iterable
- Returns:
- true if the iterable has no elements, false otherwise
- Since:
- 2.5.0
 
- 
getAtSupport the range subscript operator for a List.def list = [1, "a", 4.5, true] assert list[1..2] == ["a", 4.5] - Parameters:
- self- a List
- range- a Range indicating the items to get
- Returns:
- a new list instance based on range borders
- Since:
- 1.0
 
- 
getAtSelect a List of items from an eager or lazy List using a Collection to identify the indices to be selected.def list = [].withDefault { 42 } assert list[1,0,2] == [42, 42, 42]- Parameters:
- self- a ListWithDefault
- indices- a Collection of indices
- Returns:
- a new eager or lazy list of the values at the given indices
 
- 
getAtSupport the range subscript operator for an eager or lazy List.def list = [].withDefault { 42 } assert list[1..2] == [null, 42]- Parameters:
- self- a ListWithDefault
- range- a Range indicating the items to get
- Returns:
- a new eager or lazy list instance based on range borders
 
- 
getAtSupport the range subscript operator for an eager or lazy List.def list = [true, 1, 3.4].withDefault{ 42 }assert list[0..<0] == []- Parameters:
- self- a ListWithDefault
- range- a Range indicating the items to get
- Returns:
- a new list instance based on range borders
 
- 
getAtSupport the range subscript operator for a List.def list = [true, 1, 3.4] assert list[0..<0] == []- Parameters:
- self- a List
- range- a Range indicating the items to get
- Returns:
- a new list instance based on range borders
- Since:
- 1.0
 
- 
getAtSelect a List of items from a List using a Collection to identify the indices to be selected.def list = [true, 1, 3.4, false] assert list[1,0,2] == [1, true, 3.4] - Parameters:
- self- a List
- indices- a Collection of indices
- Returns:
- a new list of the values at the given indices
- Since:
- 1.0
 
- 
getAtSelect a List of items from an array using a Collection to identify the indices to be selected.- Parameters:
- self- an array
- indices- a Collection of indices
- Returns:
- a new list of the values at the given indices
- Since:
- 1.0
 
- 
subMapCreates a sub-Map containing the given keys. This method is similar to List.subList() but uses keys rather than index ranges.assert [1:10, 2:20, 4:40].subMap( [2, 4] ) == [2:20, 4:40] - Parameters:
- map- a Map
- keys- a Collection of keys
- Returns:
- a new Map containing the given keys
- Since:
- 1.0
 
- 
subMapCreates a sub-Map containing the given keys. This method is similar to List.subList() but uses keys rather than index ranges. The original map is unaltered.def orig = [1:10, 2:20, 3:30, 4:40] assert orig.subMap([1, 3] as int[]) == [1:10, 3:30] assert orig.subMap([2, 4] as Integer[]) == [2:20, 4:40] assert orig.size() == 4 - Parameters:
- map- a Map
- keys- an array of keys
- Returns:
- a new Map containing the given keys
- Since:
- 2.1.0
 
- 
getLooks up an item in a Map for the given key and returns the corresponding value. If there is no entry for the given key return instead the default value and also add the key and default value to the map.def map=[:] map.get("a", []) << 5 assert map == [a:[5]]For a method which doesn't mutate the map, consider instead usingMap.getOrDefault(Object, Object)or consider using Groovy'sMapWithDefaultoften instantiated usingwithDefault(Map, Closure)or with more optionswithDefault(Map, boolean, boolean, Closure).- Parameters:
- map- a Map
- key- the key to look up the value
- defaultValue- the value to return and add to the map for this key if there is no entry for the given key
- Returns:
- the value of the given key or the default value, added to the map if the key did not exist
- Since:
- 1.0
 
- 
getAtSupport the range subscript operator for an Array- Parameters:
- array- an Array of Objects
- range- a Range
- Returns:
- a range of a list from the range's from index up to but not including the range's to value
- Since:
- 1.0
 
- 
getAt- Parameters:
- array- an Array of Objects
- range- an IntRange
- Returns:
- a range of a list from the range's from index up to but not including the range's to value
- Since:
- 1.0
 
- 
getAt- Parameters:
- array- an Array of Objects
- range- an EmptyRange
- Returns:
- an empty Range
- Since:
- 1.5.0
 
- 
getAt- Parameters:
- array- an Array of Objects
- range- an ObjectRange
- Returns:
- a range of a list from the range's from index up to but not including the range's to value
- Since:
- 1.0
 
- 
toListAllows conversion of arrays into a mutable List.- Parameters:
- array- an Array of Objects
- Returns:
- the array as a List
- Since:
- 1.0
 
- 
getAtSupport the subscript operator for a List.def list = [2, "a", 5.3] assert list[1] == "a" - Parameters:
- self- a List
- idx- an index
- Returns:
- the value at the given index
- Since:
- 1.0
 
- 
getAtSupport subscript operator for list access.
- 
getAtSupport the subscript operator for an Iterator. The iterator will be partially exhausted up until the idx entry after returning if a +ve or 0 idx is used, or fully exhausted if a -ve idx is used or no corresponding entry was found. Typical usage:def iter = [2, "a", 5.3].iterator() assert iter[1] == "a" A more elaborate example:def items = [2, "a", 5.3] def iter = items.iterator() assert iter[-1] == 5.3 // iter exhausted, so reset iter = items.iterator() assert iter[1] == "a" // iter partially exhausted so now idx starts after "a" assert iter[0] == 5.3 - Parameters:
- self- an Iterator
- idx- an index value (-self.size() <= idx < self.size())
- Returns:
- the value at the given index (after normalisation) or null if no corresponding value was found
- Since:
- 1.7.2
 
- 
getAtSupport the subscript operator for an Iterable. Typical usage:// custom Iterable example: class MyIterable implements Iterable { Iterator iterator() { [1, 2, 3].iterator() } } def myIterable = new MyIterable() assert myIterable[1] == 2 // Set example: def set = [1,2,3] as LinkedHashSet assert set[1] == 2- Parameters:
- self- an Iterable
- idx- an index value (-self.size() <= idx < self.size()) but using -ve index values will be inefficient
- Returns:
- the value at the given index (after normalisation) or null if no corresponding value was found
- Since:
- 2.1.0
 
- 
putAtA helper method to allow lists to work with subscript operators.def list = [2, 3] list[0] = 1 assert list == [1, 3] - Parameters:
- self- a List
- idx- an index
- value- the value to put at the given index
- Since:
- 1.0
 
- 
putAtSupport subscript operator for list modification.
- 
putAtA helper method to allow lists to work with subscript operators.def list = ["a", true] list[1..<1] = 5assert list == ["a", 5, true]- Parameters:
- self- a List
- range- the (in this case empty) subset of the list to set
- value- the values to put at the given sublist or a Collection of values
- Since:
- 1.0
 
- 
putAtA helper method to allow lists to work with subscript operators.def list = ["a", true] list[1..<1] = [4, 3, 2]assert list == ["a", 4, 3, 2, true]- Parameters:
- self- a List
- range- the (in this case empty) subset of the list to set
- value- the Collection of values
- Since:
- 1.0
- See Also:
 
- 
putAtList subscript assignment operator when given a range as the index and the assignment operand is a collection. Example:def myList = [4, 3, 5, 1, 2, 8, 10] myList[3..5] = ["a", true] assert myList == [4, 3, 5, "a", true, 10] Items in the given range are replaced with items from the collection.- Parameters:
- self- a List
- range- the subset of the list to set
- col- the collection of values to put at the given sublist
- Since:
- 1.5.0
 
- 
putAtList subscript assignment operator when given a range as the index. Example:def myList = [4, 3, 5, 1, 2, 8, 10] myList[3..5] = "b" assert myList == [4, 3, 5, "b", 10] Items in the given range are replaced with the operand. Thevalueoperand is always treated as a single value.- Parameters:
- self- a List
- range- the subset of the list to set
- value- the value to put at the given sublist
- Since:
- 1.0
 
- 
putAtA helper method to allow lists to work with subscript operators.def list = ["a", true, 42, 9.4] list[1, 4] = ["x", false] assert list == ["a", "x", 42, 9.4, false] - Parameters:
- self- a List
- splice- the subset of the list to set
- values- the value to put at the given sublist
- Since:
- 1.0
 
- 
putAtDeprecated.use #putAt(List, List, Collection), retained for binary compatibility
- 
putAtA helper method to allow lists to work with subscript operators.def list = ["a", true, 42, 9.4] list[1, 3] = 5 assert list == ["a", 5, 42, 5] - Parameters:
- self- a List
- splice- the subset of the list to set
- value- the value to put at the given sublist
- Since:
- 1.0
 
- 
getSubListDeprecated.
- 
getAtSupport the subscript operator for a Map.def map = [a:10] assert map["a"] == 10 - Parameters:
- self- a Map
- key- an Object as a key for the map
- Returns:
- the value corresponding to the given key
- Since:
- 1.0
 
- 
plusReturns a newMapcontaining all entries fromleftandright, giving precedence toright. Any keys appearing in both Maps will appear in the resultant map with values from therightoperand. If theleftmap is one of TreeMap, LinkedHashMap, Hashtable or Properties, the returned Map will preserve that type, otherwise a HashMap will be returned.Roughly equivalent to Map m = new HashMap(); m.putAll(left); m.putAll(right); return m;but with some additional logic to preserve theleftMap type for common cases as described above.assert [a:10, b:20] + [a:5, c:7] == [a:5, b:20, c:7] - Parameters:
- left- a Map
- right- a Map
- Returns:
- a new Map containing all entries from left and right
- Since:
- 1.5.0
 
- 
putAtA helper method to allow maps to work with subscript operators- Parameters:
- self- a Map
- key- an Object as a key for the map
- value- the value to put into the map
- Returns:
- the value corresponding to the given key
- Since:
- 1.0
 
- 
getAtSupport the subscript operator for Collection.assert [String, Long, Integer] == ["a",5L,2]["class"] - Parameters:
- coll- a Collection
- property- a String
- Returns:
- a List
- Since:
- 1.0
 
- 
asImmutableA convenience method for creating an immutable Map.- Parameters:
- self- a Map
- Returns:
- an unmodifiable view of a copy of the original, i.e. an effectively immutable copy
- Since:
- 1.0
- See Also:
 
- 
asImmutableA convenience method for creating an immutable SortedMap.- Parameters:
- self- a SortedMap
- Returns:
- an unmodifiable view of a copy of the original, i.e. an effectively immutable copy
- Since:
- 1.0
- See Also:
 
- 
asImmutableA convenience method for creating an immutable List.def mutable = [1,2,3] def immutable = mutable.asImmutable() try { immutable << 4 assert false } catch (UnsupportedOperationException) { assert true } mutable << 4 assert mutable.size() == 4 assert immutable.size() == 3- Parameters:
- self- a List
- Returns:
- an unmodifiable view of a copy of the original, i.e. an effectively immutable copy
- Since:
- 1.0
- See Also:
 
- 
asImmutableA convenience method for creating an immutable Set.- Parameters:
- self- a Set
- Returns:
- an unmodifiable view of a copy of the original, i.e. an effectively immutable copy
- Since:
- 1.0
- See Also:
 
- 
asImmutableA convenience method for creating an immutable SortedSet.- Parameters:
- self- a SortedSet
- Returns:
- an unmodifiable view of a copy of the original, i.e. an effectively immutable copy
- Since:
- 1.0
- See Also:
 
- 
asImmutableA convenience method for creating an immutable Collection.- Parameters:
- self- a Collection
- Returns:
- an unmodifiable view of a copy of the original, i.e. an effectively immutable copy
- Since:
- 1.5.0
- See Also:
 
- 
asUnmodifiableCreates an unmodifiable view of a Map.- Parameters:
- self- a Map
- Returns:
- an unmodifiable view of the Map
- Since:
- 2.5.0
- See Also:
 
- 
asUnmodifiableCreates an unmodifiable view of a SortedMap.- Parameters:
- self- a SortedMap
- Returns:
- an unmodifiable view of the SortedMap
- Since:
- 2.5.0
- See Also:
 
- 
asUnmodifiableCreates an unmodifiable view of a List.def mutable = [1,2,3] def unmodifiable = mutable.asUnmodifiable() try { unmodifiable << 4 assert false } catch (UnsupportedOperationException) { assert true } mutable << 4 assert unmodifiable.size() == 4- Parameters:
- self- a List
- Returns:
- an unmodifiable view of the List
- Since:
- 2.5.0
- See Also:
 
- 
asUnmodifiableCreates an unmodifiable view of a Set.- Parameters:
- self- a Set
- Returns:
- an unmodifiable view of the Set
- Since:
- 2.5.0
- See Also:
 
- 
asUnmodifiableCreates an unmodifiable view of a SortedSet.- Parameters:
- self- a SortedSet
- Returns:
- an unmodifiable view of the SortedSet
- Since:
- 2.5.0
- See Also:
 
- 
asUnmodifiableCreates an unmodifiable view of a Collection.- Parameters:
- self- a Collection
- Returns:
- an unmodifiable view of the Collection
- Since:
- 2.5.0
- See Also:
 
- 
asSynchronizedA convenience method for creating a synchronized Map.- Parameters:
- self- a Map
- Returns:
- a synchronized Map
- Since:
- 1.0
- See Also:
 
- 
asSynchronizedA convenience method for creating a synchronized SortedMap.- Parameters:
- self- a SortedMap
- Returns:
- a synchronized SortedMap
- Since:
- 1.0
- See Also:
 
- 
asSynchronizedA convenience method for creating a synchronized Collection.- Parameters:
- self- a Collection
- Returns:
- a synchronized Collection
- Since:
- 1.0
- See Also:
 
- 
asSynchronizedA convenience method for creating a synchronized List.- Parameters:
- self- a List
- Returns:
- a synchronized List
- Since:
- 1.0
- See Also:
 
- 
asSynchronizedA convenience method for creating a synchronized Set.- Parameters:
- self- a Set
- Returns:
- a synchronized Set
- Since:
- 1.0
- See Also:
 
- 
asSynchronizedA convenience method for creating a synchronized SortedSet.- Parameters:
- self- a SortedSet
- Returns:
- a synchronized SortedSet
- Since:
- 1.0
- See Also:
 
- 
spreadSynonym fortoSpreadMap(java.util.Map).- Parameters:
- self- a map
- Returns:
- a newly created SpreadMap
- Since:
- 1.0
 
- 
toSpreadMapReturns a newSpreadMapfrom this map.The example below shows the various possible use cases: def fn(Map m) { return m.a + m.b + m.c + m.d } assert fn(a:1, b:2, c:3, d:4) == 10 assert fn(a:1, *:[b:2, c:3], d:4) == 10 assert fn([a:1, b:2, c:3, d:4].toSpreadMap()) == 10 assert fn((['a', 1, 'b', 2, 'c', 3, 'd', 4] as Object[]).toSpreadMap()) == 10 assert fn(['a', 1, 'b', 2, 'c', 3, 'd', 4].toSpreadMap()) == 10 assert fn(['abcd'.toList(), 1..4].transpose().flatten().toSpreadMap()) == 10Note that toSpreadMap() is not normally used explicitly but under the covers by Groovy.- Parameters:
- self- a map to be converted into a SpreadMap
- Returns:
- a newly created SpreadMap if this map is not null and its size is positive.
- Since:
- 1.0
- See Also:
 
- 
toSpreadMapCreates a spreadable map from this array.- Parameters:
- self- an object array
- Returns:
- a newly created SpreadMap
- Since:
- 1.0
- See Also:
 
- 
toSpreadMapCreates a spreadable map from this list.- Parameters:
- self- a list
- Returns:
- a newly created SpreadMap
- Since:
- 1.8.0
- See Also:
 
- 
toSpreadMapCreates a spreadable map from this iterable.- Parameters:
- self- an iterable
- Returns:
- a newly created SpreadMap
- Since:
- 2.4.0
- See Also:
 
- 
withDefaultWraps a map using the decorator pattern with a wrapper that intercepts all calls toget(key). If an unknown key is found, a default value will be stored into the Map before being returned. The default value stored will be the result of calling the supplied Closure with the key as the parameter to the Closure. Example usage:def map = [a:1, b:2].withDefault{ k->k.toCharacter().isLowerCase() ? 10 : -10 } def expected = [a:1, b:2, c:10, D:-10] assert expected.every{ e->e.value == map[e.key] } def constMap = [:].withDefault{ 42 } assert constMap.foo == 42 assert constMap.size() == 1- Parameters:
- self- a Map
- init- a Closure which is passed the unknown key
- Returns:
- the wrapped Map
- Since:
- 1.7.1
- See Also:
 
- 
withDefaultpublic static <K,V> Map<K,V> withDefault(Map<K, V> self, boolean autoGrow, boolean autoShrink, Closure<V> init) Wraps a map using the decorator pattern with a wrapper that intercepts all calls toget(key)andput(key, value). If an unknown key is found forget, a default value will be returned. The default value will be the result of calling the supplied Closure with the key as the parameter to the Closure. IfautoGrowis set, the value will be stored into the map. IfautoShrinkis set, then an attempt toputthe default value into the map is ignored and indeed any existing value would be removed. If you wish the backing map to be as small as possible, consider settingautoGrowtofalseandautoShrinktotrue. This keeps the backing map as small as possible, i.e. sparse, but also means thatcontainsKey,keySet,size, and other methods will only reflect the sparse values. If you are wrapping an immutable map, you should setautoGrowandautoShrinktofalse. In this scenario, thegetmethod is essentially a shorthand for callinggetOrDefaultwith the default value supplied once as a Closure. Example usage:// sparse map example def answers = [life: 100].withDefault(false, true){ 42 } assert answers.size() == 1 assert answers.foo == 42 assert answers.size() == 1 answers.life = 42 answers.putAll(universe: 42, everything: 42) assert answers.size() == 0 // immutable map example def certainties = [death: true, taxes: true].asImmutable().withDefault(false, false){ false } assert certainties.size() == 2 assert certainties.wealth == false assert certainties.size() == 2- Parameters:
- self- a Map
- autoGrow- whether calling get could potentially grow the map if the key isn't found
- autoShrink- whether calling put with the default value could potentially shrink the map
- init- a Closure which is passed the unknown key
- Returns:
- the wrapped Map
- Since:
- 4.0.1
 
- 
withDefaultAn alias forwithLazyDefaultwhich decorates a list allowing it to grow when called with index values outside the normal list bounds.- Parameters:
- self- a List
- init- a Closure with the target index as parameter which generates the default value
- Returns:
- the decorated List
- Since:
- 1.8.7
- See Also:
 
- 
withDefault$$bridgeDeprecated.
- 
withLazyDefaultDecorates a list allowing it to grow when called with a non-existent index value. When called with such values, the list is grown in size and a default value is placed in the list by calling a suppliedinitClosure. Subsequent retrieval operations if finding a null value in the list assume it was set as null from an earlier growing operation and again call theinitClosure to populate the retrieved value; consequently the list can't be used to store null values.How it works: The decorated list intercepts all calls to getAt(index)andget(index). If an index greater than or equal to the currentsize()is used, the list will grow automatically up to the specified index. Gaps will be filled bynull. If a default value should also be used to fill gaps instead ofnull, usewithEagerDefault. IfgetAt(index)orget(index)are called and a null value is found, it is assumed that the null value was a consequence of an earlier grow list operation and theinitClosure is called to populate the value.Example usage: def list = [0, 1].withLazyDefault{ 42 } assert list[0] == 0 assert list[1] == 1 assert list[3] == 42 // default value assert list == [0, 1, null, 42] // gap filled with null // illustrate using the index when generating default values def list2 = [5].withLazyDefault{ index->index * index } assert list2[3] == 9 assert list2 == [5, null, null, 9] assert list2[2] == 4 assert list2 == [5, null, 4, 9] // illustrate what happens with null values list2[2] = null assert list2[2] == 4- Parameters:
- self- a List
- init- a Closure with the target index as parameter which generates the default value
- Returns:
- the decorated List
- Since:
- 1.8.7
 
- 
withLazyDefault$$bridgeDeprecated.
- 
withEagerDefaultDecorates a list allowing it to grow when called with a non-existent index value. When called with such values, the list is grown in size and a default value is placed in the list by calling a suppliedinitClosure. Null values can be stored in the list.How it works: The decorated list intercepts all calls to getAt(index)andget(index). If an index greater than or equal to the currentsize()is used, the list will grow automatically up to the specified index. Gaps will be filled by calling theinitClosure. If generating a default value is a costly operation consider usingwithLazyDefault.Example usage: def list = [0, 1].withEagerDefault{ 42 } assert list[0] == 0 assert list[1] == 1 assert list[3] == 42 // default value assert list == [0, 1, 42, 42] // gap filled with default value // illustrate using the index when generating default values def list2 = [5].withEagerDefault{ index->index * index } assert list2[3] == 9 assert list2 == [5, 1, 4, 9] // illustrate what happens with null values list2[2] = null assert list2[2] == null assert list2 == [5, 1, null, 9]- Parameters:
- self- a List
- init- a Closure with the target index as parameter which generates the default value
- Returns:
- the wrapped List
- Since:
- 1.8.7
 
- 
withEagerDefault$$bridgeDeprecated.
- 
withIndexZips an Iterable with indices in (value, index) order. Example usage:assert [["a", 0], ["b", 1]] == ["a", "b"].withIndex() assert ["0: a", "1: b"] == ["a", "b"].withIndex().collect { str, idx->"$idx: $str" }- Parameters:
- self- an Iterable
- Returns:
- a zipped list with indices
- Since:
- 2.4.0
- See Also:
 
- 
indexedZips an Iterable with indices in (index, value) order. Example usage:assert [0: "a", 1: "b"] == ["a", "b"].indexed() assert ["0: a", "1: b"] == ["a", "b"].indexed().collect { idx, str->"$idx: $str" }- Parameters:
- self- an Iterable
- Returns:
- a zipped map with indices
- Since:
- 2.4.0
- See Also:
 
- 
withIndexZips an Iterable with indices in (value, index) order. Example usage:assert [["a", 5], ["b", 6]] == ["a", "b"].withIndex(5) assert ["1: a", "2: b"] == ["a", "b"].withIndex(1).collect { str, idx->"$idx: $str" }- Parameters:
- self- an Iterable
- offset- an index to start from
- Returns:
- a zipped list with indices
- Since:
- 2.4.0
- See Also:
 
- 
indexedZips an Iterable with indices in (index, value) order. Example usage:assert [5: "a", 6: "b"] == ["a", "b"].indexed(5) assert ["1: a", "2: b"] == ["a", "b"].indexed(1).collect { idx, str->"$idx: $str" }- Parameters:
- self- an Iterable
- offset- an index to start from
- Returns:
- a Map (since the keys/indices are unique) containing the elements from the iterable zipped with indices
- Since:
- 2.4.0
- See Also:
 
- 
indexedZips an int[] with indices in (index, value) order starting from index 0.- Since:
- 3.0.8
- See Also:
 
- 
indexedZips an int[] with indices in (index, value) order. Example usage:int[] nums = [10, 20, 30] assert [5: 10, 6: 20, 7: 30] == nums.indexed(5) assert ["1: 10", "2: 20", "3: 30"] == nums.indexed(1).collect { idx, str->"$idx: $str" }- Parameters:
- self- an Iterable
- offset- an index to start from
- Returns:
- a Map (since the keys/indices are unique) containing the elements from the iterable zipped with indices
- Since:
- 3.0.8
- See Also:
 
- 
indexedZips a long[] with indices in (index, value) order starting from index 0.- Since:
- 3.0.8
- See Also:
 
- 
indexedZips a long[] with indices in (index, value) order.- Parameters:
- self- a long[]
- offset- an index to start from
- Returns:
- a Map (since the keys/indices are unique) containing the elements from the iterable zipped with indices
- Since:
- 3.0.8
- See Also:
 
- 
indexedZips a double[] with indices in (index, value) order starting from index 0.- Since:
- 3.0.8
- See Also:
 
- 
indexedZips a double[] with indices in (index, value) order.- Parameters:
- self- a double[]
- offset- an index to start from
- Returns:
- a Map (since the keys/indices are unique) containing the elements from the iterable zipped with indices
- Since:
- 3.0.8
- See Also:
 
- 
withIndexZips an iterator with indices in (value, index) order. Example usage:assert [["a", 0], ["b", 1]] == ["a", "b"].iterator().withIndex().toList() assert ["0: a", "1: b"] == ["a", "b"].iterator().withIndex().collect { str, idx->"$idx: $str" }.toList()- Parameters:
- self- an iterator
- Returns:
- a zipped iterator with indices
- Since:
- 2.4.0
- See Also:
 
- 
indexedZips an iterator with indices in (index, value) order. Example usage:assert [[0, "a"], [1, "b"]] == ["a", "b"].iterator().indexed().collect{ tuple->[tuple.first, tuple.second] } assert ["0: a", "1: b"] == ["a", "b"].iterator().indexed().collect { idx, str->"$idx: $str" }.toList()- Parameters:
- self- an iterator
- Returns:
- a zipped iterator with indices
- Since:
- 2.4.0
- See Also:
 
- 
withIndexZips an iterator with indices in (value, index) order. Example usage:assert [["a", 5], ["b", 6]] == ["a", "b"].iterator().withIndex(5).toList() assert ["1: a", "2: b"] == ["a", "b"].iterator().withIndex(1).collect { str, idx->"$idx: $str" }.toList()- Parameters:
- self- an iterator
- offset- an index to start from
- Returns:
- a zipped iterator with indices
- Since:
- 2.4.0
- See Also:
 
- 
indexedZips an iterator with indices in (index, value) order. Example usage:assert [[5, "a"], [6, "b"]] == ["a", "b"].iterator().indexed(5).toList() assert ["a: 1", "b: 2"] == ["a", "b"].iterator().indexed(1).collect { idx, str->"$str: $idx" }.toList()- Parameters:
- self- an iterator
- offset- an index to start from
- Returns:
- a zipped iterator with indices
- Since:
- 2.4.0
- See Also:
 
- 
sortSorts the Collection. Assumes that the collection items are comparable and uses their natural ordering to determine the resulting order. If the Collection is a List, it is sorted in place and returned. Otherwise, the elements are first placed into a new list which is then sorted and returned - leaving the original Collection unchanged.assert [1,2,3] == [3,1,2].sort() - Parameters:
- self- the Iterable to be sorted
- Returns:
- the sorted Iterable as a List
- Since:
- 2.2.0
- See Also:
 
- 
sortSorts the Iterable. Assumes that the Iterable items are comparable and uses their natural ordering to determine the resulting order. If the Iterable is a List and mutate is true, it is sorted in place and returned. Otherwise, the elements are first placed into a new list which is then sorted and returned - leaving the original Iterable unchanged.assert [1,2,3] == [3,1,2].sort() def orig = [1, 3, 2] def sorted = orig.sort(false) assert orig == [1, 3, 2] assert sorted == [1, 2, 3] - Parameters:
- self- the iterable to be sorted
- mutate- false will always cause a new list to be created, true will mutate lists in place
- Returns:
- the sorted iterable as a List
- Since:
- 2.2.0
 
- 
sortSorts the elements from the given map into a new ordered map using the closure as a comparator to determine the ordering. The original map is unchanged.def map = [a:5, b:3, c:6, d:4].sort { a, b->a.value<=>b.value } assert map == [b:3, d:4, a:5, c:6]- Parameters:
- self- the original unsorted map
- closure- a Closure used as a comparator
- Returns:
- the sorted map
- Since:
- 1.6.0
 
- 
sortSorts the elements from the given map into a new ordered Map using the specified key comparator to determine the ordering. The original map is unchanged.def map = [ba:3, cz:6, ab:5].sort({ a, b->a[-1]<=>b[-1] } as Comparator) assert map*.value == [3, 5, 6]- Parameters:
- self- the original unsorted map
- comparator- a Comparator
- Returns:
- the sorted map
- Since:
- 1.7.2
 
- 
sortSorts the elements from the given map into a new ordered Map using the natural ordering of the keys to determine the ordering. The original map is unchanged.map = [ba:3, cz:6, ab:5].sort() assert map*.value == [5, 3, 6] - Parameters:
- self- the original unsorted map
- Returns:
- the sorted map
- Since:
- 1.7.2
 
- 
sortpublic static <T> T[] sort(T[] self) Modifies this array so that its elements are in sorted order. The array items are assumed to be comparable.- Parameters:
- self- the array to be sorted
- Returns:
- the sorted array
- Since:
- 1.5.5
 
- 
sortpublic static <T> T[] sort(T[] self, boolean mutate) Sorts the given array into sorted order. The array items are assumed to be comparable. If mutate is true, the array is sorted in place and returned. Otherwise, a new sorted array is returned and the original array remains unchanged.def orig = ["hello","hi","Hey"] as String[] def sorted = orig.sort(false) assert orig == ["hello","hi","Hey"] as String[] assert sorted == ["Hey","hello","hi"] as String[] orig.sort(true) assert orig == ["Hey","hello","hi"] as String[] - Parameters:
- self- the array to be sorted
- mutate- false will always cause a new array to be created, true will mutate the array in place
- Returns:
- the sorted array
- Since:
- 1.8.1
 
- 
sortSorts the given iterator items into a sorted iterator. The items are assumed to be comparable. The original iterator will become exhausted of elements after completing this method call. A new iterator is produced that traverses the items in sorted order.- Parameters:
- self- the Iterator to be sorted
- Returns:
- the sorted items as an Iterator
- Since:
- 1.5.5
 
- 
sortSorts the given iterator items into a sorted iterator using the comparator. The original iterator will become exhausted of elements after completing this method call. A new iterator is produced that traverses the items in sorted order.- Parameters:
- self- the Iterator to be sorted
- comparator- a Comparator used for comparing items
- Returns:
- the sorted items as an Iterator
- Since:
- 1.5.5
 
- 
sortSorts the Iterable using the given Comparator. If the Iterable is a List and mutate is true, it is sorted in place and returned. Otherwise, the elements are first placed into a new list which is then sorted and returned - leaving the original Iterable unchanged.assert ["hi","hey","hello"] == ["hello","hi","hey"].sort(false, { a, b->a.length()<=>b.length() } as Comparator )def orig = ["hello","hi","Hey"] def sorted = orig.sort(false, String.CASE_INSENSITIVE_ORDER) assert orig == ["hello","hi","Hey"] assert sorted == ["hello","Hey","hi"] - Parameters:
- self- the Iterable to be sorted
- mutate- false will always cause a new list to be created, true will mutate lists in place
- comparator- a Comparator used for the comparison
- Returns:
- a sorted List
- Since:
- 2.2.0
 
- 
sortSorts the given array into sorted order using the given comparator.- Parameters:
- self- the array to be sorted
- comparator- a Comparator used for the comparison
- Returns:
- the sorted array
- Since:
- 1.5.5
 
- 
sortModifies this array so that its elements are in sorted order as determined by the given comparator. If mutate is true, the array is sorted in place and returned. Otherwise, a new sorted array is returned and the original array remains unchanged.def orig = ["hello","hi","Hey"] as String[] def sorted = orig.sort(false, String.CASE_INSENSITIVE_ORDER) assert orig == ["hello","hi","Hey"] as String[] assert sorted == ["hello","Hey","hi"] as String[] orig.sort(true, String.CASE_INSENSITIVE_ORDER) assert orig == ["hello","Hey","hi"] as String[] - Parameters:
- self- the array containing elements to be sorted
- mutate- false will always cause a new array to be created, true will mutate arrays in place
- comparator- a Comparator used for the comparison
- Returns:
- a sorted array
- Since:
- 1.8.1
 
- 
sortSorts the given iterator items into a sorted iterator using the Closure to determine the correct ordering. The original iterator will be fully processed after the method call.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. - Parameters:
- self- the Iterator to be sorted
- closure- a Closure used to determine the correct ordering
- Returns:
- the sorted items as an Iterator
- Since:
- 1.5.5
 
- 
sortSorts the elements from this array into a newly created array using the Closure to determine the correct ordering.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. - Parameters:
- self- the array containing the elements to be sorted
- closure- a Closure used to determine the correct ordering
- Returns:
- the sorted array
- Since:
- 1.5.5
 
- 
sortModifies this array so that its elements are in sorted order using the Closure to determine the correct ordering. If mutate is false, a new array is returned and the original array remains unchanged. Otherwise, the original array is sorted in place and returned.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. def orig = ["hello","hi","Hey"] as String[] def sorted = orig.sort(false) { it.size() } assert orig == ["hello","hi","Hey"] as String[] assert sorted == ["hi","Hey","hello"] as String[] orig.sort(true) { it.size() } assert orig == ["hi","Hey","hello"] as String[]- Parameters:
- self- the array to be sorted
- mutate- false will always cause a new array to be created, true will mutate arrays in place
- closure- a Closure used to determine the correct ordering
- Returns:
- the sorted array
- Since:
- 1.8.1
 
- 
sortSorts this Iterable using the given Closure to determine the correct ordering. If the Iterable is a List, it is sorted in place and returned. Otherwise, the elements are first placed into a new list which is then sorted and returned - leaving the original Iterable unchanged.If the Closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. assert ["hi","hey","hello"] == ["hello","hi","hey"].sort { it.length() }assert ["hi","hey","hello"] == ["hello","hi","hey"].sort { a, b->a.length()<=>b.length() }- Parameters:
- self- the Iterable to be sorted
- closure- a 1 or 2 arg Closure used to determine the correct ordering
- Returns:
- a newly created sorted List
- Since:
- 2.2.0
- See Also:
 
- 
sortSorts this Iterable using the given Closure to determine the correct ordering. If the Iterable is a List and mutate is true, it is sorted in place and returned. Otherwise, the elements are first placed into a new list which is then sorted and returned - leaving the original Iterable unchanged.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. assert ["hi","hey","hello"] == ["hello","hi","hey"].sort { it.length() }assert ["hi","hey","hello"] == ["hello","hi","hey"].sort { a, b->a.length()<=>b.length() }def orig = ["hello","hi","Hey"] def sorted = orig.sort(false) { it.toUpperCase() } assert orig == ["hello","hi","Hey"] assert sorted == ["hello","Hey","hi"]- Parameters:
- self- the Iterable to be sorted
- mutate- false will always cause a new list to be created, true will mutate lists in place
- closure- a 1 or 2 arg Closure used to determine the correct ordering
- Returns:
- a newly created sorted List
- Since:
- 2.2.0
 
- 
sortAvoids doing unnecessary work when sorting an already sorted set (i.e. an identity function for an already sorted set).- Parameters:
- self- an already sorted set
- Returns:
- the set
- Since:
- 1.0
 
- 
sortAvoids doing unnecessary work when sorting an already sorted map (i.e. an identity function for an already sorted map).- Parameters:
- self- an already sorted map
- Returns:
- the map
- Since:
- 1.8.1
 
- 
toSortedSorts the Iterable. Assumes that the Iterable elements are comparable and uses aNumberAwareComparatorto determine the resulting order.NumberAwareComparatorhas special treatment for numbers but otherwise uses the natural ordering of the Iterable elements. The elements are first placed into a new list which is then sorted and returned - leaving the original Iterable unchanged.def orig = [1, 3, 2] def sorted = orig.toSorted() assert orig == [1, 3, 2] assert sorted == [1, 2, 3] - Parameters:
- self- the Iterable to be sorted
- Returns:
- the sorted iterable as a List
- Since:
- 2.4.0
- See Also:
 
- 
toSortedSorts the Iterable using the given Comparator. The elements are first placed into a new list which is then sorted and returned - leaving the original Iterable unchanged.def orig = ["hello","hi","Hey"] def sorted = orig.toSorted(String.CASE_INSENSITIVE_ORDER) assert orig == ["hello","hi","Hey"] assert sorted == ["hello","Hey","hi"] - Parameters:
- self- the Iterable to be sorted
- comparator- a Comparator used for the comparison
- Returns:
- a sorted List
- Since:
- 2.4.0
 
- 
toSortedSorts this Iterable using the given Closure to determine the correct ordering. The elements are first placed into a new list which is then sorted and returned - leaving the original Iterable unchanged.If the Closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. assert ["hi","hey","hello"] == ["hello","hi","hey"].sort { it.length() }assert ["hi","hey","hello"] == ["hello","hi","hey"].sort { a, b->a.length()<=>b.length() }- Parameters:
- self- the Iterable to be sorted
- closure- a 1 or 2 arg Closure used to determine the correct ordering
- Returns:
- a newly created sorted List
- Since:
- 2.4.0
- See Also:
 
- 
toSortedSorts the Iterator. Assumes that the Iterator elements are comparable and uses aNumberAwareComparatorto determine the resulting order.NumberAwareComparatorhas special treatment for numbers but otherwise uses the natural ordering of the Iterator elements. A new iterator is produced that traverses the items in sorted order.- Parameters:
- self- the Iterator to be sorted
- Returns:
- the sorted items as an Iterator
- Since:
- 2.4.0
- See Also:
 
- 
toSortedSorts the given iterator items using the comparator. The original iterator will become exhausted of elements after completing this method call. A new iterator is produced that traverses the items in sorted order.- Parameters:
- self- the Iterator to be sorted
- comparator- a Comparator used for comparing items
- Returns:
- the sorted items as an Iterator
- Since:
- 2.4.0
 
- 
toSortedSorts the given iterator items into a sorted iterator using the Closure to determine the correct ordering. The original iterator will be fully processed after the method call.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. - Parameters:
- self- the Iterator to be sorted
- closure- a Closure used to determine the correct ordering
- Returns:
- the sorted items as an Iterator
- Since:
- 2.4.0
- See Also:
 
- 
toSortedpublic static <T> T[] toSorted(T[] self) Returns a sorted version of the given array using the supplied comparator.- Parameters:
- self- the array to be sorted
- Returns:
- the sorted array
- Since:
- 2.4.0
- See Also:
 
- 
toSortedReturns a sorted version of the given array using the supplied comparator to determine the resulting order.def sumDigitsComparator = [compare: { num1, num2->num1.toString().toList()*.toInteger().sum()<=>num2.toString().toList()*.toInteger().sum() }] as Comparator Integer[] nums = [9, 44, 222, 7000] def result = nums.toSorted(sumDigitsComparator) assert result instanceof Integer[] assert result == [222, 7000, 44, 9]- Parameters:
- self- the array to be sorted
- comparator- a Comparator used for the comparison
- Returns:
- the sorted array
- Since:
- 2.4.0
 
- 
toSortedSorts the elements from this array into a newly created array using the Closure to determine the correct ordering.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single parameter and return a Comparable (typically an Integer) which is then used for further comparison. - Parameters:
- self- the array containing the elements to be sorted
- closure- a Closure used to determine the correct ordering
- Returns:
- a sorted array
- Since:
- 2.4.0
- See Also:
 
- 
toSortedSorts the elements from the given map into a new ordered map using aNumberAwareComparatoron map entry values to determine the resulting order.NumberAwareComparatorhas special treatment for numbers but otherwise uses the natural ordering of the Iterator elements. The original map is unchanged.def map = [a:5L, b:3, c:6, d:4.0].toSorted() assert map.toString() == '[b:3, d:4.0, a:5, c:6]' - Parameters:
- self- the original unsorted map
- Returns:
- the sorted map
- Since:
- 2.4.0
 
- 
toSortedSorts the elements from the given map into a new ordered map using the supplied comparator to determine the ordering. The original map is unchanged.def keyComparator = [compare: { e1, e2->e1.key<=>e2.key }] as Comparator def valueComparator = [compare: { e1, e2->e1.value<=>e2.value }] as Comparator def map1 = [a:5, b:3, d:4, c:6].toSorted(keyComparator) assert map1.toString() == '[a:5, b:3, c:6, d:4]' def map2 = [a:5, b:3, d:4, c:6].toSorted(valueComparator) assert map2.toString() == '[b:3, d:4, a:5, c:6]'- Parameters:
- self- the original unsorted map
- comparator- a Comparator used for the comparison
- Returns:
- the sorted map
- Since:
- 2.4.0
 
- 
toSortedSorts the elements from the given map into a new ordered map using the supplied Closure condition as a comparator to determine the ordering. The original map is unchanged.If the closure has two parameters it is used like a traditional Comparator. I.e. it should compare its two entry parameters for order, returning a negative integer, zero, or a positive integer when the first parameter is less than, equal to, or greater than the second respectively. Otherwise, the Closure is assumed to take a single entry parameter and return a Comparable (typically an Integer) which is then used for further comparison. def map = [a:5, b:3, c:6, d:4].toSorted { a, b->a.value<=>b.value } assert map.toString() == '[b:3, d:4, a:5, c:6]'- Parameters:
- self- the original unsorted map
- condition- a Closure used as a comparator
- Returns:
- the sorted map
- Since:
- 2.4.0
 
- 
toSortedAvoids doing unnecessary work when sorting an already sorted set- Parameters:
- self- an already sorted set
- Returns:
- an ordered copy of the sorted set
- Since:
- 2.4.0
 
- 
toSortedAvoids doing unnecessary work when sorting an already sorted map- Parameters:
- self- an already sorted map
- Returns:
- an ordered copy of the map
- Since:
- 2.4.0
 
- 
popRemoves the initial item from the List.def list = ["a", false, 2] assert list.pop() == 'a' assert list == [false, 2] This is similar to pop on a Stack where the first item in the list represents the top of the stack. Note: The behavior of this method changed in Groovy 2.5 to align with Java. If you need the old behavior use 'removeLast'.- Parameters:
- self- a List
- Returns:
- the item removed from the List
- Throws:
- NoSuchElementException- if the list is empty
- Since:
- 1.0
 
- 
removeLastRemoves the last item from the List.def list = ["a", false, 2] assert list.removeLast() == 2 assert list == ["a", false] Using add() and removeLast() is similar to push and pop on a Stack where the last item in the list represents the top of the stack.- Parameters:
- self- a List
- Returns:
- the item removed from the List
- Throws:
- NoSuchElementException- if the list is empty
- Since:
- 2.5.0
 
- 
putAllpublic static <K,V> Map<K,V> putAll(Map<K, V> self, Collection<? extends Map.Entry<? extends K, ? extends V>> entries) Provides an easy way to append multiple Map.Entry values to a Map.- Parameters:
- self- a Map
- entries- a Collection of Map.Entry items to be added to the Map.
- Returns:
- the same map, after the items have been added to it.
- Since:
- 1.6.1
 
- 
pluspublic static <K,V> Map<K,V> plus(Map<K, V> self, Collection<? extends Map.Entry<? extends K, ? extends V>> entries) Returns a newMapcontaining all entries fromselfandentries, giving precedence toentries. Any keys appearing in both Maps will appear in the resultant map with values from theentriesoperand. Ifselfmap is one of TreeMap, LinkedHashMap, Hashtable or Properties, the returned Map will preserve that type, otherwise a HashMap will be returned.- Parameters:
- self- a Map
- entries- a Collection of Map.Entry items to be added to the Map.
- Returns:
- a new Map containing all key, value pairs from self and entries
- Since:
- 1.6.1
 
- 
pushPrepends an item to the start of the List.def list = [3, 4, 2] list.push("x") assert list == ['x', 3, 4, 2]This is similar to push on a Stack where the first item in the list represents the top of the stack. Note: The behavior of this method changed in Groovy 2.5 to align with Java. If you need the old behavior use 'add'.- Parameters:
- self- a List
- value- element to be prepended to this list.
- Returns:
- true (for legacy compatibility reasons).
- Since:
- 1.5.5
 
- 
lastAn optimized version oflast(List).- Since:
- 2.5.15
 
- 
lastReturns the last item from the List.def list = [3, 4, 2] assert list.last() == 2 // check original is unaltered assert list == [3, 4, 2] - Parameters:
- self- a List
- Returns:
- the last item from the List
- Throws:
- NoSuchElementException- if the list is empty and you try to access the last() item.
- Since:
- 1.5.5
 
- 
lastReturns the last item from the Iterable.def set = [3, 4, 2] as LinkedHashSet assert set.last() == 2 // check original unaltered assert set == [3, 4, 2] as Set The last element returned by the Iterable's iterator is returned. If the Iterable doesn't guarantee a defined order it may appear like a random element is returned.- Parameters:
- self- an Iterable
- Returns:
- the last item from the Iterable
- Throws:
- NoSuchElementException- if the Iterable is empty and you try to access the last() item.
- Since:
- 1.8.7
 
- 
lastpublic static <T> T last(T[] self) Returns the last item from the array.def array = [3, 4, 2].toArray() assert array.last() == 2 - Parameters:
- self- an array
- Returns:
- the last item from the array
- Throws:
- NoSuchElementException- if the array is empty and you try to access the last() item.
- Since:
- 1.7.3
 
- 
firstReturns the first item from the List.def list = [3, 4, 2] assert list.first() == 3 // check original is unaltered assert list == [3, 4, 2] - Parameters:
- self- a List
- Returns:
- the first item from the List
- Throws:
- NoSuchElementException- if the list is empty and you try to access the first() item.
- Since:
- 1.5.5
 
- 
firstReturns the first item from the Iterable.def set = [3, 4, 2] as LinkedHashSet assert set.first() == 3 // check original is unaltered assert set == [3, 4, 2] as Set The first element returned by the Iterable's iterator is returned. If the Iterable doesn't guarantee a defined order it may appear like a random element is returned.- Parameters:
- self- an Iterable
- Returns:
- the first item from the Iterable
- Throws:
- NoSuchElementException- if the Iterable is empty and you try to access the first() item.
- Since:
- 1.8.7
 
- 
firstpublic static <T> T first(T[] self) Returns the first item from the array.def array = [3, 4, 2].toArray() assert array.first() == 3 - Parameters:
- self- an array
- Returns:
- the first item from the array
- Throws:
- NoSuchElementException- if the array is empty and you try to access the first() item.
- Since:
- 1.7.3
 
- 
headReturns the first item from the Iterable.def set = [3, 4, 2] as LinkedHashSet assert set.head() == 3 // check original is unaltered assert set == [3, 4, 2] as Set The first element returned by the Iterable's iterator is returned. If the Iterable doesn't guarantee a defined order it may appear like a random element is returned.- Parameters:
- self- an Iterable
- Returns:
- the first item from the Iterable
- Throws:
- NoSuchElementException- if the Iterable is empty and you try to access the head() item.
- Since:
- 2.4.0
 
- 
headReturns the first item from the List.def list = [3, 4, 2] assert list.head() == 3 assert list == [3, 4, 2] - Parameters:
- self- a List
- Returns:
- the first item from the List
- Throws:
- NoSuchElementException- if the list is empty and you try to access the head() item.
- Since:
- 1.5.5
 
- 
headpublic static <T> T head(T[] self) Returns the first item from the Object array.def array = [3, 4, 2].toArray() assert array.head() == 3 - Parameters:
- self- an array
- Returns:
- the first item from the Object array
- Throws:
- NoSuchElementException- if the array is empty and you try to access the head() item.
- Since:
- 1.7.3
 
- 
tailReturns the items from the List excluding the first item.def list = [3, 4, 2] assert list.tail() == [4, 2] assert list == [3, 4, 2] - Parameters:
- self- a List
- Returns:
- a List without its first element
- Throws:
- NoSuchElementException- if the List is empty and you try to access the tail()
- Since:
- 1.5.6
 
- 
tailReturns the items from the SortedSet excluding the first item.def sortedSet = [3, 4, 2] as SortedSet assert sortedSet.tail() == [3, 4] as SortedSet assert sortedSet == [3, 4, 2] as SortedSet - Parameters:
- self- a SortedSet
- Returns:
- a SortedSet without its first element
- Throws:
- NoSuchElementException- if the SortedSet is empty and you try to access the tail()
- Since:
- 2.4.0
 
- 
tailsCalculates the tail values of this Iterable: the first value will be this list of all items from the iterable and the final one will be an empty list, with the intervening values the results of successive applications of tail on the items.assert [1, 2, 3, 4].tails() == [[1, 2, 3, 4], [2, 3, 4], [3, 4], [4], []] - Parameters:
- self- an Iterable
- Returns:
- a List of the tail values from the given Iterable
- Since:
- 2.5.0
 
- 
tailReturns the items from the Iterable excluding the first item.def list = [3, 4, 2] assert list.tail() == [4, 2] assert list == [3, 4, 2] - Parameters:
- self- an Iterable
- Returns:
- a collection without its first element
- Throws:
- NoSuchElementException- if the iterable is empty and you try to access the tail()
- Since:
- 2.4.0
 
- 
tailpublic static <T> T[] tail(T[] self) Returns the items from the array excluding the first item.String[] strings = ["a", "b", "c"] def result = strings.tail() assert result.class.componentType == String String[] expected = ["b", "c"] assert result == expected - Parameters:
- self- an array
- Returns:
- an array without its first element
- Throws:
- NoSuchElementException- if the array is empty and you try to access the tail()
- Since:
- 1.7.3
 
- 
tailReturns the original iterator after throwing away the first element.- Parameters:
- self- the original iterator
- Returns:
- the iterator without its first element
- Throws:
- NoSuchElementException- if the array is empty and you try to access the tail()
- Since:
- 1.8.1
 
- 
initsCalculates the init values of this Iterable: the first value will be this list of all items from the iterable and the final one will be an empty list, with the intervening values the results of successive applications of init on the items.assert [1, 2, 3, 4].inits() == [[1, 2, 3, 4], [1, 2, 3], [1, 2], [1], []] - Parameters:
- self- an Iterable
- Returns:
- a List of the init values from the given Iterable
- Since:
- 2.5.0
 
- 
initReturns the items from the Iterable excluding the last item. Leaves the original Iterable unchanged.def list = [3, 4, 2] assert list.init() == [3, 4] assert list == [3, 4, 2] - Parameters:
- self- an Iterable
- Returns:
- a Collection without its last element
- Throws:
- NoSuchElementException- if the iterable is empty and you try to access init()
- Since:
- 2.4.0
 
- 
initReturns the items from the List excluding the last item. Leaves the original List unchanged.def list = [3, 4, 2] assert list.init() == [3, 4] assert list == [3, 4, 2] - Parameters:
- self- a List
- Returns:
- a List without its last element
- Throws:
- NoSuchElementException- if the List is empty and you try to access init()
- Since:
- 2.4.0
 
- 
initReturns the items from the SortedSet excluding the last item. Leaves the original SortedSet unchanged.def sortedSet = [3, 4, 2] as SortedSet assert sortedSet.init() == [2, 3] as SortedSet assert sortedSet == [3, 4, 2] as SortedSet - Parameters:
- self- a SortedSet
- Returns:
- a SortedSet without its last element
- Throws:
- NoSuchElementException- if the SortedSet is empty and you try to access init()
- Since:
- 2.4.0
 
- 
initReturns an Iterator containing all the items from this iterator except the last one.def iter = [3, 4, 2].listIterator() def result = iter.init() assert result.toList() == [3, 4] - Parameters:
- self- an Iterator
- Returns:
- an Iterator without the last element from the original Iterator
- Throws:
- NoSuchElementException- if the iterator is empty and you try to access init()
- Since:
- 2.4.0
 
- 
initpublic static <T> T[] init(T[] self) Returns the items from the Object array excluding the last item.String[] strings = ["a", "b", "c"] def result = strings.init() assert result.length == 2 assert strings.class.componentType == String- Parameters:
- self- an array
- Returns:
- an array without its last element
- Throws:
- NoSuchElementException- if the array is empty and you try to access the init() item.
- Since:
- 2.4.0
 
- 
takeReturns the firstnumelements from the head of this List.def strings = [ 'a', 'b', 'c' ] assert strings.take( 0 ) == [] assert strings.take( 2 ) == [ 'a', 'b' ] assert strings.take( 5 ) == [ 'a', 'b', 'c' ] - Parameters:
- self- the original List
- num- the number of elements to take from this List
- Returns:
- a List consisting of the first numelements from this List, or else all the elements from the List if it has less thannumelements.
- Since:
- 1.8.1
 
- 
takeReturns the firstnumelements from the head of this SortedSet.def strings = [ 'a', 'b', 'c' ] as SortedSet assert strings.take( 0 ) == [] as SortedSet assert strings.take( 2 ) == [ 'a', 'b' ] as SortedSet assert strings.take( 5 ) == [ 'a', 'b', 'c' ] as SortedSet - Parameters:
- self- the original SortedSet
- num- the number of elements to take from this SortedSet
- Returns:
- a SortedSet consisting of the first numelements from this List, or else all the elements from the SortedSet if it has less thannumelements.
- Since:
- 2.4.0
 
- 
takepublic static <T> T[] take(T[] self, int num) Returns the firstnumelements from the head of this array.String[] strings = [ 'a', 'b', 'c' ] assert strings.take( 0 ) == [] as String[] assert strings.take( 2 ) == [ 'a', 'b' ] as String[] assert strings.take( 5 ) == [ 'a', 'b', 'c' ] as String[] - Parameters:
- self- the original array
- num- the number of elements to take from this array
- Returns:
- an array consisting of the first numelements of this array, or else the whole array if it has less thannumelements.
- Since:
- 1.8.1
 
- 
takeReturns the firstnumelements from the head of this Iterable.def strings = [ 'a', 'b', 'c' ] assert strings.take( 0 ) == [] assert strings.take( 2 ) == [ 'a', 'b' ] assert strings.take( 5 ) == [ 'a', 'b', 'c' ] class AbcIterable implements Iterable { Iterator iterator() { "abc".iterator() } } def abc = new AbcIterable() assert abc.take(0) == [] assert abc.take(1) == ['a'] assert abc.take(3) == ['a', 'b', 'c'] assert abc.take(5) == ['a', 'b', 'c'] - Parameters:
- self- the original Iterable
- num- the number of elements to take from this Iterable
- Returns:
- a Collection consisting of the first numelements from this Iterable, or else all the elements from the Iterable if it has less thannumelements.
- Since:
- 1.8.7
 
- 
addAllAdds all items from the iterator to the Collection.- Parameters:
- self- the collection
- items- the items to add
- Returns:
- true if the collection changed
 
- 
addAllAdds all items from the iterable to the Collection.- Parameters:
- self- the collection
- items- the items to add
- Returns:
- true if the collection changed
 
- 
takeReturns a new map containing the firstnumelements from the head of this map. If the map instance does not have ordered keys, then this function could return a randomnumentries. Groovy by default uses LinkedHashMap, so this shouldn't be an issue in the main.def strings = [ 'a':10, 'b':20, 'c':30 ] assert strings.take( 0 ) == [:] assert strings.take( 2 ) == [ 'a':10, 'b':20 ] assert strings.take( 5 ) == [ 'a':10, 'b':20, 'c':30 ] - Parameters:
- self- the original map
- num- the number of elements to take from this map
- Returns:
- a new map consisting of the first numelements of this map, or else the whole map if it has less thannumelements.
- Since:
- 1.8.1
 
- 
takeReturns an iterator of up to the firstnumelements from this iterator. The original iterator is stepped along bynumelements.def a = 0 def iter = [ hasNext:{ true }, next:{ a++ } ] as Iterator def iteratorCompare( Iterator a, List b ) { a.collect { it } == b } assert iteratorCompare( iter.take( 0 ), [] ) assert iteratorCompare( iter.take( 2 ), [ 0, 1 ] ) assert iteratorCompare( iter.take( 5 ), [ 2, 3, 4, 5, 6 ] )- Parameters:
- self- the Iterator
- num- the number of elements to take from this iterator
- Returns:
- an iterator consisting of up to the first numelements of this iterator.
- Since:
- 1.8.1
 
- 
takeRightpublic static <T> T[] takeRight(T[] self, int num) Returns the lastnumelements from the tail of this array.String[] strings = [ 'a', 'b', 'c' ] assert strings.takeRight( 0 ) == [] as String[] assert strings.takeRight( 2 ) == [ 'b', 'c' ] as String[] assert strings.takeRight( 5 ) == [ 'a', 'b', 'c' ] as String[] - Parameters:
- self- the original array
- num- the number of elements to take from this array
- Returns:
- an array consisting of the last numelements of this array, or else the whole array if it has less thannumelements.
- Since:
- 2.4.0
 
- 
takeRightReturns the lastnumelements from the tail of this Iterable.def strings = [ 'a', 'b', 'c' ] assert strings.takeRight( 0 ) == [] assert strings.takeRight( 2 ) == [ 'b', 'c' ] assert strings.takeRight( 5 ) == [ 'a', 'b', 'c' ] class AbcIterable implements Iterable { Iterator iterator() { "abc".iterator() } } def abc = new AbcIterable() assert abc.takeRight(0) == [] assert abc.takeRight(1) == ['c'] assert abc.takeRight(3) == ['a', 'b', 'c'] assert abc.takeRight(5) == ['a', 'b', 'c'] - Parameters:
- self- the original Iterable
- num- the number of elements to take from this Iterable
- Returns:
- a Collection consisting of the last numelements from this Iterable, or else all the elements from the Iterable if it has less thannumelements.
- Since:
- 2.4.0
 
- 
takeRightReturns the lastnumelements from the tail of this List.def strings = [ 'a', 'b', 'c' ] assert strings.takeRight( 0 ) == [] assert strings.takeRight( 2 ) == [ 'b', 'c' ] assert strings.takeRight( 5 ) == [ 'a', 'b', 'c' ] - Parameters:
- self- the original List
- num- the number of elements to take from this List
- Returns:
- a List consisting of the last numelements from this List, or else all the elements from the List if it has less thannumelements.
- Since:
- 2.4.0
 
- 
takeRightReturns the lastnumelements from the tail of this SortedSet.def strings = [ 'a', 'b', 'c' ] as SortedSet assert strings.takeRight( 0 ) == [] as SortedSet assert strings.takeRight( 2 ) == [ 'b', 'c' ] as SortedSet assert strings.takeRight( 5 ) == [ 'a', 'b', 'c' ] as SortedSet - Parameters:
- self- the original SortedSet
- num- the number of elements to take from this SortedSet
- Returns:
- a SortedSet consisting of the last numelements from this SortedSet, or else all the elements from the SortedSet if it has less thannumelements.
- Since:
- 2.4.0
 
- 
dropDrops the given number of elements from the head of this List.def strings = [ 'a', 'b', 'c' ] as SortedSet assert strings.drop( 0 ) == [ 'a', 'b', 'c' ] as SortedSet assert strings.drop( 2 ) == [ 'c' ] as SortedSet assert strings.drop( 5 ) == [] as SortedSet - Parameters:
- self- the original SortedSet
- num- the number of elements to drop from this Iterable
- Returns:
- a SortedSet consisting of all the elements of this Iterable minus the first numelements, or an empty list if it has less thannumelements.
- Since:
- 2.4.0
 
- 
dropDrops the given number of elements from the head of this List.def strings = [ 'a', 'b', 'c' ] assert strings.drop( 0 ) == [ 'a', 'b', 'c' ] assert strings.drop( 2 ) == [ 'c' ] assert strings.drop( 5 ) == [] - Parameters:
- self- the original List
- num- the number of elements to drop from this Iterable
- Returns:
- a List consisting of all the elements of this Iterable minus the first numelements, or an empty list if it has less thannumelements.
- Since:
- 1.8.1
 
- 
dropDrops the given number of elements from the head of this Iterable.def strings = [ 'a', 'b', 'c' ] assert strings.drop( 0 ) == [ 'a', 'b', 'c' ] assert strings.drop( 2 ) == [ 'c' ] assert strings.drop( 5 ) == [] class AbcIterable implements Iterable { Iterator iterator() { "abc".iterator() } } def abc = new AbcIterable() assert abc.drop(0) == ['a', 'b', 'c'] assert abc.drop(1) == ['b', 'c'] assert abc.drop(3) == [] assert abc.drop(5) == [] - Parameters:
- self- the original Iterable
- num- the number of elements to drop from this Iterable
- Returns:
- a Collection consisting of all the elements of this Iterable minus the first numelements, or an empty list if it has less thannumelements.
- Since:
- 1.8.7
 
- 
droppublic static <T> T[] drop(T[] self, int num) Drops the given number of elements from the head of this array if they are available.String[] strings = [ 'a', 'b', 'c' ] assert strings.drop( 0 ) == [ 'a', 'b', 'c' ] as String[] assert strings.drop( 2 ) == [ 'c' ] as String[] assert strings.drop( 5 ) == [] as String[] - Parameters:
- self- the original array
- num- the number of elements to drop from this array
- Returns:
- an array consisting of all elements of this array except the
         first numones, or else the empty array, if this array has less thannumelements.
- Since:
- 1.8.1
 
- 
dropDrops the given number of key/value pairs from the head of this map if they are available.def strings = [ 'a':10, 'b':20, 'c':30 ] assert strings.drop( 0 ) == [ 'a':10, 'b':20, 'c':30 ] assert strings.drop( 2 ) == [ 'c':30 ] assert strings.drop( 5 ) == [:] If the map instance does not have ordered keys, then this function could drop a randomnumentries. Groovy by default uses LinkedHashMap, so this shouldn't be an issue in the main.- Parameters:
- self- the original map
- num- the number of elements to drop from this map
- Returns:
- a map consisting of all key/value pairs of this map except the first
         numones, or else the empty map, if this map has less thannumelements.
- Since:
- 1.8.1
 
- 
dropDrops the given number of elements from the head of this iterator if they are available. The original iterator is stepped along bynumelements.def iteratorCompare( Iterator a, List b ) { a.collect { it } == b } def iter = [ 1, 2, 3, 4, 5 ].listIterator() assert iteratorCompare( iter.drop( 0 ), [ 1, 2, 3, 4, 5 ] ) iter = [ 1, 2, 3, 4, 5 ].listIterator() assert iteratorCompare( iter.drop( 2 ), [ 3, 4, 5 ] ) iter = [ 1, 2, 3, 4, 5 ].listIterator() assert iteratorCompare( iter.drop( 5 ), [] )- Parameters:
- self- the original iterator
- num- the number of elements to drop from this iterator
- Returns:
- The iterator stepped along by numelements if they exist.
- Since:
- 1.8.1
 
- 
dropRightDrops the given number of elements from the tail of this SortedSet.def strings = [ 'a', 'b', 'c' ] as SortedSet assert strings.dropRight( 0 ) == [ 'a', 'b', 'c' ] as SortedSet assert strings.dropRight( 2 ) == [ 'a' ] as SortedSet assert strings.dropRight( 5 ) == [] as SortedSet - Parameters:
- self- the original SortedSet
- num- the number of elements to drop from this SortedSet
- Returns:
- a List consisting of all the elements of this SortedSet minus the last numelements, or an empty SortedSet if it has less thannumelements.
- Since:
- 2.4.0
 
- 
dropRightDrops the given number of elements from the tail of this List.def strings = [ 'a', 'b', 'c' ] assert strings.dropRight( 0 ) == [ 'a', 'b', 'c' ] assert strings.dropRight( 2 ) == [ 'a' ] assert strings.dropRight( 5 ) == [] - Parameters:
- self- the original List
- num- the number of elements to drop from this List
- Returns:
- a List consisting of all the elements of this List minus the last numelements, or an empty List if it has less thannumelements.
- Since:
- 2.4.0
 
- 
dropRightDrops the given number of elements from the tail of this Iterable.def strings = [ 'a', 'b', 'c' ] assert strings.dropRight( 0 ) == [ 'a', 'b', 'c' ] assert strings.dropRight( 2 ) == [ 'a' ] assert strings.dropRight( 5 ) == [] class AbcIterable implements Iterable { Iterator iterator() { "abc".iterator() } } def abc = new AbcIterable() assert abc.dropRight(0) == ['a', 'b', 'c'] assert abc.dropRight(1) == ['a', 'b'] assert abc.dropRight(3) == [] assert abc.dropRight(5) == [] - Parameters:
- self- the original Iterable
- num- the number of elements to drop from this Iterable
- Returns:
- a Collection consisting of all the elements of this Iterable minus the last numelements, or an empty list if it has less thannumelements.
- Since:
- 2.4.0
 
- 
dropRightDrops the given number of elements from the tail of this Iterator.def getObliterator() { "obliter8".iterator() } assert obliterator.dropRight(-1).toList() == ['o', 'b', 'l', 'i', 't', 'e', 'r', '8'] assert obliterator.dropRight(0).toList() == ['o', 'b', 'l', 'i', 't', 'e', 'r', '8'] assert obliterator.dropRight(1).toList() == ['o', 'b', 'l', 'i', 't', 'e', 'r'] assert obliterator.dropRight(4).toList() == ['o', 'b', 'l', 'i'] assert obliterator.dropRight(7).toList() == ['o'] assert obliterator.dropRight(8).toList() == [] assert obliterator.dropRight(9).toList() == []- Parameters:
- self- the original Iterator
- num- the number of elements to drop
- Returns:
- an Iterator consisting of all the elements of this Iterator minus the last numelements, or an empty Iterator if it has less thannumelements.
- Since:
- 2.4.0
 
- 
dropRightpublic static <T> T[] dropRight(T[] self, int num) Drops the given number of elements from the tail of this array if they are available.String[] strings = [ 'a', 'b', 'c' ] assert strings.dropRight( 0 ) == [ 'a', 'b', 'c' ] as String[] assert strings.dropRight( 2 ) == [ 'a' ] as String[] assert strings.dropRight( 5 ) == [] as String[] - Parameters:
- self- the original array
- num- the number of elements to drop from this array
- Returns:
- an array consisting of all elements of this array except the
         last numones, or else the empty array, if this array has less thannumelements.
- Since:
- 2.4.0
 
- 
takeWhileReturns the longest prefix of this list where each element passed to the given closure condition evaluates to true. Similar totakeWhile(Iterable, groovy.lang.Closure)except that it attempts to preserve the type of the original list.def nums = [ 1, 3, 2 ] assert nums.takeWhile{ it<1 } == [] assert nums.takeWhile{ it<3 } == [ 1 ] assert nums.takeWhile{ it<4 } == [ 1, 3, 2 ]- Parameters:
- self- the original list
- condition- the closure that must evaluate to true to continue taking elements
- Returns:
- a prefix of the given list where each element passed to the given closure evaluates to true
- Since:
- 1.8.7
 
- 
takeWhileReturns a Collection containing the longest prefix of the elements from this Iterable where each element passed to the given closure evaluates to true.class AbcIterable implements Iterable { Iterator iterator() { "abc".iterator() } } def abc = new AbcIterable() assert abc.takeWhile{ it <'b' } == ['a'] assert abc.takeWhile{ it<='b' } == ['a', 'b']- Parameters:
- self- an Iterable
- condition- the closure that must evaluate to true to continue taking elements
- Returns:
- a Collection containing a prefix of the elements from the given Iterable where each element passed to the given closure evaluates to true
- Since:
- 1.8.7
 
- 
takeWhileReturns the longest prefix of this SortedSet where each element passed to the given closure condition evaluates to true. Similar totakeWhile(Iterable, groovy.lang.Closure)except that it attempts to preserve the type of the original SortedSet.def nums = [ 1, 2, 3 ] as SortedSet assert nums.takeWhile{ it<1 } == [] as SortedSet assert nums.takeWhile{ it<2 } == [ 1 ] as SortedSet assert nums.takeWhile{ it<4 } == [ 1, 2, 3 ] as SortedSet- Parameters:
- self- the original SortedSet
- condition- the closure that must evaluate to true to continue taking elements
- Returns:
- a prefix of the given SortedSet where each element passed to the given closure evaluates to true
- Since:
- 2.4.0
 
- 
takeWhileReturns the longest prefix of this Map where each entry (or key/value pair) when passed to the given closure evaluates to true.def shopping = [milk:1, bread:2, chocolate:3] assert shopping.takeWhile{ it.key.size()If the map instance does not have ordered keys, then this function could appear to take random entries. Groovy by default uses LinkedHashMap, so this shouldn't be an issue in the main.<6 } == [milk:1, bread:2] assert shopping.takeWhile{ it.value % 2 } == [milk:1] assert shopping.takeWhile{ k, v->k.size() + v<=7 } == [milk:1, bread:2]- Parameters:
- self- a Map
- condition- a 1 (or 2) arg Closure that must evaluate to true for the entry (or key and value) to continue taking elements
- Returns:
- a prefix of the given Map where each entry (or key/value pair) passed to the given closure evaluates to true
- Since:
- 1.8.7
 
- 
takeWhileReturns the longest prefix of this array where each element passed to the given closure evaluates to true.def nums = [ 1, 3, 2 ] as Integer[] assert nums.takeWhile{ it<1 } == [] as Integer[] assert nums.takeWhile{ it<3 } == [ 1 ] as Integer[] assert nums.takeWhile{ it<4 } == [ 1, 3, 2 ] as Integer[]- Parameters:
- self- the original array
- condition- the closure that must evaluate to true to continue taking elements
- Returns:
- a prefix of the given array where each element passed to the given closure evaluates to true
- Since:
- 1.8.7
 
- 
takeWhileReturns the longest prefix of elements in this iterator where each element passed to the given condition closure evaluates to true.def a = 0 def iter = [ hasNext:{ true }, next:{ a++ } ] as Iterator assert [].iterator().takeWhile{ it<3 }.toList() == [] assert [1, 2, 3, 4, 5].iterator().takeWhile{ it<3 }.toList() == [ 1, 2 ] assert iter.takeWhile{ it<5 }.toList() == [ 0, 1, 2, 3, 4 ]- Parameters:
- self- the Iterator
- condition- the closure that must evaluate to true to continue taking elements
- Returns:
- a prefix of elements in the given iterator where each element passed to the given closure evaluates to true
- Since:
- 1.8.7
 
- 
dropWhileReturns a suffix of this SortedSet where elements are dropped from the front while the given Closure evaluates to true. Similar todropWhile(Iterable, groovy.lang.Closure)except that it attempts to preserve the type of the original SortedSet.def nums = [ 1, 2, 3 ] as SortedSet assert nums.dropWhile{ it<4 } == [] as SortedSet assert nums.dropWhile{ it<2 } == [ 2, 3 ] as SortedSet assert nums.dropWhile{ it != 3 } == [ 3 ] as SortedSet assert nums.dropWhile{ it == 0 } == [ 1, 2, 3 ] as SortedSet- Parameters:
- self- the original SortedSet
- condition- the closure that must evaluate to true to continue dropping elements
- Returns:
- the shortest suffix of the given SortedSet such that the given closure condition evaluates to true for each element dropped from the front of the SortedSet
- Since:
- 2.4.0
 
- 
dropWhileReturns a suffix of this List where elements are dropped from the front while the given Closure evaluates to true. Similar todropWhile(Iterable, groovy.lang.Closure)except that it attempts to preserve the type of the original list.def nums = [ 1, 3, 2 ] assert nums.dropWhile{ it<4 } == [] assert nums.dropWhile{ it<3 } == [ 3, 2 ] assert nums.dropWhile{ it != 2 } == [ 2 ] assert nums.dropWhile{ it == 0 } == [ 1, 3, 2 ]- Parameters:
- self- the original list
- condition- the closure that must evaluate to true to continue dropping elements
- Returns:
- the shortest suffix of the given List such that the given closure condition evaluates to true for each element dropped from the front of the List
- Since:
- 1.8.7
 
- 
dropWhileReturns a suffix of this Iterable where elements are dropped from the front while the given closure evaluates to true.class HorseIterable implements Iterable { Iterator iterator() { "horse".iterator() } } def horse = new HorseIterable() assert horse.dropWhile{ it <'r' } == ['r', 's', 'e'] assert horse.dropWhile{ it<='r' } == ['s', 'e']- Parameters:
- self- an Iterable
- condition- the closure that must evaluate to true to continue dropping elements
- Returns:
- a Collection containing the shortest suffix of the given Iterable such that the given closure condition evaluates to true for each element dropped from the front of the Iterable
- Since:
- 1.8.7
 
- 
dropWhileCreate a suffix of the given Map by dropping as many entries as possible from the front of the original Map such that calling the given closure condition evaluates to true when passed each of the dropped entries (or key/value pairs).def shopping = [milk:1, bread:2, chocolate:3] assert shopping.dropWhile{ it.key.size()If the map instance does not have ordered keys, then this function could appear to drop random entries. Groovy by default uses LinkedHashMap, so this shouldn't be an issue in the main.<6 } == [chocolate:3] assert shopping.dropWhile{ it.value % 2 } == [bread:2, chocolate:3] assert shopping.dropWhile{ k, v->k.size() + v<=7 } == [chocolate:3]- Parameters:
- self- a Map
- condition- a 1 (or 2) arg Closure that must evaluate to true for the entry (or key and value) to continue dropping elements
- Returns:
- the shortest suffix of the given Map such that the given closure condition evaluates to true for each element dropped from the front of the Map
- Since:
- 1.8.7
 
- 
dropWhileCreate a suffix of the given array by dropping as many elements as possible from the front of the original array such that calling the given closure condition evaluates to true when passed each of the dropped elements.def nums = [ 1, 3, 2 ] as Integer[] assert nums.dropWhile{ it<=3 } == [ ] as Integer[] assert nums.dropWhile{ it<3 } == [ 3, 2 ] as Integer[] assert nums.dropWhile{ it != 2 } == [ 2 ] as Integer[] assert nums.dropWhile{ it == 0 } == [ 1, 3, 2 ] as Integer[]- Parameters:
- self- the original array
- condition- the closure that must evaluate to true to continue dropping elements
- Returns:
- the shortest suffix of the given array such that the given closure condition evaluates to true for each element dropped from the front of the array
- Since:
- 1.8.7
 
- 
dropWhileCreates an Iterator that returns a suffix of the elements from an original Iterator. As many elements as possible are dropped from the front of the original Iterator such that calling the given closure condition evaluates to true when passed each of the dropped elements.def a = 0 def iter = [ hasNext:{ a<10 }, next:{ a++ } ] as Iterator assert [].iterator().dropWhile{ it<3 }.toList() == [] assert [1, 2, 3, 4, 5].iterator().dropWhile{ it<3 }.toList() == [ 3, 4, 5 ] assert iter.dropWhile{ it<5 }.toList() == [ 5, 6, 7, 8, 9 ]- Parameters:
- self- the Iterator
- condition- the closure that must evaluate to true to continue dropping elements
- Returns:
- the shortest suffix of elements from the given Iterator such that the given closure condition evaluates to true for each element dropped from the front of the Iterator
- Since:
- 1.8.7
 
- 
asCollectionConverts this Iterable to a Collection. Returns the original Iterable if it is already a Collection.Example usage: assert new HashSet().asCollection() instanceof Collection - Parameters:
- self- an Iterable to be converted into a Collection
- Returns:
- a newly created List if this Iterable is not already a Collection
- Since:
- 2.4.0
 
- 
asListConverts this Iterable to a List. Returns the original Iterable if it is already a List.Example usage: assert new HashSet().asList() instanceof List - Parameters:
- self- an Iterable to be converted into a List
- Returns:
- a newly created List if this Iterable is not already a List
- Since:
- 2.2.0
 
- 
asBooleanCoerce an object instance to a boolean value. An object is coerced to true if it's not null, to false if it is null.- Parameters:
- object- the object to coerce
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asBooleanCoerce a Boolean instance to a boolean value.- Parameters:
- bool- the Boolean
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asBooleanCoerce a collection instance to a boolean value. A collection is coerced to false if it's empty, and to true otherwise.assert [1,2].asBoolean() == true assert [].asBoolean() == false - Parameters:
- collection- the collection
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asBooleanCoerce a map instance to a boolean value. A map is coerced to false if it's empty, and to true otherwise.assert [:] as Boolean == false assert [a:2] as Boolean == true - Parameters:
- map- the map
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asBooleanCoerce an iterator instance to a boolean value. An iterator is coerced to false if there are no more elements to iterate over, and to true otherwise.- Parameters:
- iterator- the iterator
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asBooleanCoerce an enumeration instance to a boolean value. An enumeration is coerced to false if there are no more elements to enumerate, and to true otherwise.- Parameters:
- enumeration- the enumeration
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asBooleanCoerce an Object array to a boolean value. An Object array is false if the array is of length 0. and to true otherwise- Parameters:
- array- the array
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asBooleanpublic static boolean asBoolean(byte[] array) Coerces a byte array to a boolean value. A byte array is false if the array is of length 0, and true otherwise.- Parameters:
- array- an array
- Returns:
- the array's boolean value
- Since:
- 1.7.4
 
- 
asBooleanpublic static boolean asBoolean(short[] array) Coerces a short array to a boolean value. A short array is false if the array is of length 0, and true otherwise.- Parameters:
- array- an array
- Returns:
- the array's boolean value
- Since:
- 1.7.4
 
- 
asBooleanpublic static boolean asBoolean(int[] array) Coerces an int array to a boolean value. An int array is false if the array is of length 0, and true otherwise.- Parameters:
- array- an array
- Returns:
- the array's boolean value
- Since:
- 1.7.4
 
- 
asBooleanpublic static boolean asBoolean(long[] array) Coerces a long array to a boolean value. A long array is false if the array is of length 0, and true otherwise.- Parameters:
- array- an array
- Returns:
- the array's boolean value
- Since:
- 1.7.4
 
- 
asBooleanpublic static boolean asBoolean(float[] array) Coerces a float array to a boolean value. A float array is false if the array is of length 0, and true otherwise.- Parameters:
- array- an array
- Returns:
- the array's boolean value
- Since:
- 1.7.4
 
- 
asBooleanpublic static boolean asBoolean(double[] array) Coerces a double array to a boolean value. A double array is false if the array is of length 0, and true otherwise.- Parameters:
- array- an array
- Returns:
- the array's boolean value
- Since:
- 1.7.4
 
- 
asBooleanpublic static boolean asBoolean(boolean[] array) Coerces a boolean array to a boolean value. A boolean array is false if the array is of length 0, and true otherwise.- Parameters:
- array- an array
- Returns:
- the array's boolean value
- Since:
- 1.7.4
 
- 
asBooleanpublic static boolean asBoolean(char[] array) Coerces a char array to a boolean value. A char array is false if the array is of length 0, and true otherwise.- Parameters:
- array- an array
- Returns:
- the array's boolean value
- Since:
- 1.7.4
 
- 
asBooleanCoerce a character to a boolean value. A character is coerced to false if it's character value is equal to 0, and to true otherwise.- Parameters:
- character- the character
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asBooleanCoerce a Float instance to a boolean value.- Parameters:
- object- the Float
- Returns:
- truefor non-zero and non-NaN values, else- false
- Since:
- 2.6.0
 
- 
asBooleanCoerce a Double instance to a boolean value.- Parameters:
- object- the Double
- Returns:
- truefor non-zero and non-NaN values, else- false
- Since:
- 2.6.0
 
- 
asBooleanCoerce a number to a boolean value. A number is coerced to false if its double value is equal to 0, and to true otherwise.- Parameters:
- number- the number
- Returns:
- the boolean value
- Since:
- 1.7.0
 
- 
asTypeConverts the given iterable to another type.- Parameters:
- iterable- an Iterable
- clazz- the desired class
- Returns:
- the object resulting from this type conversion
- Since:
- 2.4.12
- See Also:
 
- 
asTypeConverts the given collection to another type. A default concrete type is used for List, Set, or SortedSet. If the given type has a constructor taking a collection, that is used. Otherwise, the call is deferred toasType(Object,Class). If this collection is already of the given type, the same instance is returned.- Parameters:
- col- a collection
- clazz- the desired class
- Returns:
- the object resulting from this type conversion
- Since:
- 1.0
- See Also:
 
- 
asTypeConverts the given array to either a List, Set, or SortedSet. If the given class is something else, the call is deferred toasType(Object,Class).- Parameters:
- ary- an array
- clazz- the desired class
- Returns:
- the object resulting from this type conversion
- Since:
- 1.5.1
- See Also:
 
- 
asTypeCoerces the closure to an implementation of the given class. The class is assumed to be an interface or class with a single method definition. The closure is used as the implementation of that single method.- Parameters:
- impl- the implementation of the single method
- type- the target type
- Returns:
- A proxy of the given type which wraps this closure.
- Since:
- 1.0
 
- 
asTypeCoerces this map to the given type, using the map's keys as the public method names, and values as the implementation. Typically the value would be a closure which behaves like the method implementation.- Parameters:
- map- this map
- clazz- the target type
- Returns:
- a Proxy of the given type, which defers calls to this map's elements.
- Since:
- 1.0
 
- 
shuffleRandomly reorders the elements of the specified list.def list = ["a", 4, false] def origSize = list.size() def origCopy = new ArrayList(list) list.shuffle() assert list.size() == origSize assert origCopy.every{ list.contains(it) }- Parameters:
- self- a List
- Since:
- 3.0.0
- See Also:
 
- 
shuffleRandomly reorders the elements of the specified list using the specified random instance as the source of randomness.def r = new Random() def list = ["a", 4, false] def origSize = list.size() def origCopy = new ArrayList(list) list.shuffle(r) assert list.size() == origSize assert origCopy.every{ list.contains(it) }- Parameters:
- self- a List
- Since:
- 3.0.0
- See Also:
 
- 
shuffledCreates a new list containing the elements of the specified list but in a random order.def list = ["a", 4, false] def result = list.shuffled() assert list !== result assert list == ["a", 4, false] assert list.size() == result.size() assert list.every{ result.contains(it) }- Parameters:
- self- a List
- Since:
- 3.0.0
- See Also:
 
- 
shuffledCreates a new list containing the elements of the specified list but in a random order using the specified random instance as the source of randomness.def r = new Random() def list = ["a", 4, false] def result = list.shuffled(r) assert list !== result assert list == ["a", 4, false] assert list.size() == result.size() assert list.every{ result.contains(it) }- Parameters:
- self- a List
- Since:
- 3.0.0
- See Also:
 
- 
shufflepublic static <T> void shuffle(T[] self) Randomly reorders the elements of the specified array.Integer[] array = [10, 5, 20] def origSize = array.size() def items = array.toList() array.shuffle() assert array.size() == origSize assert items.every{ array.contains(it) }- Parameters:
- self- an array
- Since:
- 3.0.0
 
- 
shuffleRandomly reorders the elements of the specified array using the specified random instance as the source of randomness.def r = new Random() Integer[] array = [10, 5, 20] def origSize = array.size() def items = array.toList() array.shuffle(r) assert array.size() == origSize assert items.every{ array.contains(it) }- Parameters:
- self- an array
- Since:
- 3.0.0
 
- 
shuffledpublic static <T> T[] shuffled(T[] self) Creates a new array containing the elements of the specified array but in a random order.Integer[] array = [10, 5, 20] def result = array.shuffled() assert array !== result assert array.length == result.length assert array.every{ result.contains(it) } assert array == new Integer[] {10, 5, 20}- Parameters:
- self- an array
- Returns:
- the shuffled array
- Since:
- 3.0.0
 
- 
shuffledCreates a new array containing the elements of the specified array but in a random order using the specified random instance as the source of randomness.def r = new Random() Integer[] array = [10, 5, 20] def result = array.shuffled(r) assert array !== result assert array.length == result.length assert array.every{ result.contains(it) } assert array == new Integer[] {10, 5, 20}- Parameters:
- self- an array
- Returns:
- the shuffled array
- Since:
- 3.0.0
 
- 
asReversedCreates a view list with reversed order, and the order of original list will not change.def list = ["a", 6, true] assert list.asReversed() == [true, 6, "a"] assert list == ["a", 6, true] - Type Parameters:
- T- the type of element
- Parameters:
- self- a list
- Returns:
- the reversed list
- Since:
- 4.0.0
 
- 
reverseCreates a new List with the identical contents to this list but in reverse order.def list = ["a", 4, false] assert list.reverse() == [false, 4, "a"] assert list == ["a", 4, false] - Parameters:
- self- a List
- Returns:
- a reversed List
- Since:
- 1.0
- See Also:
 
- 
reverseReverses the elements in a list. If mutate is true, the original list is modified in place and returned. Otherwise, a new list containing the reversed items is produced.def list = ["a", 4, false] assert list.reverse(false) == [false, 4, "a"] assert list == ["a", 4, false] assert list.reverse(true) == [false, 4, "a"] assert list == [false, 4, "a"] - Parameters:
- self- a List
- mutate- true if the list itself should be reversed in place and returned, false if a new list should be created
- Returns:
- a reversed List
- Since:
- 1.8.1
 
- 
reversepublic static <T> T[] reverse(T[] self) Creates a new array containing items which are the same as this array but in reverse order.- Parameters:
- self- an array
- Returns:
- an array containing the reversed items
- Since:
- 1.5.5
- See Also:
 
- 
reversepublic static <T> T[] reverse(T[] self, boolean mutate) Reverse the items in an array. If mutate is true, the original array is modified in place and returned. Otherwise, a new array containing the reversed items is produced.def array = new Object[] {1,2,3} def yarra = array.reverse(true) assert array == 3..1 assert yarra == 3..1 yarra = array.reverse(false) assert array == 3..1 assert yarra == 1..3- Parameters:
- self- an array
- mutate-- trueif the array itself should be reversed in place,- falseif a new array should be created
- Returns:
- an array containing the reversed items
- Since:
- 1.8.1
 
- 
reverseReverses the iterator. The original iterator will become exhausted of elements after determining the reversed values. A new iterator for iterating through the reversed values is returned.- Parameters:
- self- an Iterator
- Returns:
- a reversed Iterator
- Since:
- 1.5.5
 
- 
plusCreate an array as a union of two arrays.Integer[] a = [1, 2, 3] Integer[] b = [4, 5, 6] def result = a + b assert result.class == Integer[] assert result == new Integer[]{1, 2, 3, 4, 5, 6} Number[] c = [-1, 0.9, null] result = c + a assert result.class == Number[] assert result == new Number[]{-1, 0.9, null, 1, 2, 3} result = a + c assert result.class == Integer[] assert result == new Integer[]{1, 2, 3, -1, 0, null} Date[] d = [new Date()] // improper type arguments; Date can't be coerced to Integer groovy.test.GroovyAssert.shouldFail(ClassCastException) { a + d }- Parameters:
- left- the left Array
- right- the right Array
- Returns:
- A new array containing right appended to left.
- Throws:
- ClassCastException- if any elements from right aren't compatible (according to- DefaultTypeTransformation.castToType(Object, Class)) to the component type of left
- Since:
- 1.8.7
 
- 
plusCreate an array containing elements from an original array plus an additional appended element.Integer[] a = [1, 2, 3] def result = a + 4 assert result.class == Integer[] assert result == new Integer[]{1, 2, 3, 4} result = a + 5.5d assert result.class == Integer[] assert result == new Integer[]{1, 2, 3, 5} // improper type arguments; Date can't be coerced to Integer groovy.test.GroovyAssert.shouldFail(ClassCastException) { a + new Date() }- Parameters:
- left- the array
- right- the value to append
- Returns:
- A new array containing left with right appended to it.
- Throws:
- ClassCastException- if any elements from right aren't compatible (according to- DefaultTypeTransformation.castToType(Object, Class)) to the component type of left
- Since:
- 1.8.7
 
- 
plusCreate an array containing elements from an original array plus those from a Collection.Integer[] a = [1, 2, 3] def result = a + [4, 5, 6] assert result.class == Integer[] assert result == new Integer[]{1, 2, 3, 4, 5, 6} Number[] c = [-1, 0.9, null] result = c + [1, 2, 3] assert result.class == Number[] assert result == new Number[]{-1, 0.9, null, 1, 2, 3} result = a + [-1, 0.9, null] assert result.class == Integer[] assert result == new Integer[]{1, 2, 3, -1, 0, null} // improper type arguments; Date can't be coerced to Integer groovy.test.GroovyAssert.shouldFail(ClassCastException) { a + [new Date()] }- Parameters:
- left- the array
- right- a Collection to be appended
- Returns:
- A new array containing left with right appended to it.
- Throws:
- ClassCastException- if any elements from right aren't compatible (according to- DefaultTypeTransformation.castToType(Object, Class)) to the component type of left
- Since:
- 1.8.7
 
- 
plusCreate an array containing elements from an original array plus those from an Iterable.class AbcIterable implements Iterable { Iterator iterator() { "abc".iterator() } } String[] array = ['x', 'y', 'z'] def result = array + new AbcIterable() assert result.class == String[] assert result == new String[]{'x', 'y', 'z', 'a', 'b', 'c'} - Parameters:
- left- the array
- right- an Iterable to be appended
- Returns:
- A new array containing elements from left with those from right appended.
- Throws:
- ClassCastException- if any elements from right aren't compatible (according to- DefaultTypeTransformation.castToType(Object, Class)) to the component type of left
- Since:
- 1.8.7
- See Also:
 
- 
unionCreate an Object array as a union of two arrays. This is similar toplus(Object[], Object[])but always return an Object array and so might be more applicable when adding heterogeneous arrays.Integer[] a = [1, 2, 3] String[] b = ['foo', 'bar'] def result = a.union(b) assert result.class == Object[] assert result == new Object[]{1, 2, 3, 'foo', 'bar'}- Parameters:
- left- the left Array
- right- the right Array
- Returns:
- A new Object array containing right appended to left.
- Since:
- 4.0.0
 
- 
unionCreate an Object array containing elements from an original array plus an additional appended element. This is similar toplus(Object[], Object)but always return an Object array and so might be more applicable when adding heterogeneous arrays.Integer[] a = [1, 2, 3] def result = a.union('foo') assert result.class == Object[] assert result == new Object[]{1, 2, 3, 'foo'}- Parameters:
- left- the array
- right- the value to append
- Returns:
- A new Object array containing left with right appended to it.
- Since:
- 4.0.0
 
- 
unionCreate an object array containing elements from an original array plus those from a Collection. This is similar toplus(Object[], Collection)but always return an Object array and so might be more applicable when adding heterogeneous arrays.Integer[] a = [1, 2, 3] def result = a.union(['foo', 'bar']) assert result.class == Object[] assert result == new Object[]{1, 2, 3, 'foo', 'bar'}- Parameters:
- left- the array
- right- a Collection to be appended
- Returns:
- A new Object array containing left with right appended to it.
- Since:
- 4.0.0
 
- 
unionCreate an Object array containing elements from an original array plus those from an Iterable. This is similar toplus(Object[], Iterable)but always return an Object array and so might be more applicable when adding heterogeneous arrays.class AbcIterable implements Iterable { Iterator iterator() { "abc".iterator() } } String[] array = ['x', 'y', 'z'] def result = array.union(new AbcIterable()) assert result.class == Object[] assert result == new Object[]{'x', 'y', 'z', 'a', 'b', 'c'} - Parameters:
- left- the array
- right- an Iterable to be appended
- Returns:
- A new Object array containing elements from left with those from right appended.
- Since:
- 4.0.0
 
- 
plusCreate a Collection as a union of two collections. If the left collection is a Set, then the returned collection will be a Set otherwise a List. This operation will always create a new object for the result, while the operands remain unchanged.assert [1,2,3,4] == [1,2] + [3,4] - Parameters:
- left- the left Collection
- right- the right Collection
- Returns:
- the merged Collection
- Since:
- 1.5.0
 
- 
plusCreate a Collection as a union of two iterables. If the left iterable is a Set, then the returned collection will be a Set otherwise a List. This operation will always create a new object for the result, while the operands remain unchanged.assert [1,2,3,4] == [1,2] + [3,4] - Parameters:
- left- the left Iterable
- right- the right Iterable
- Returns:
- the merged Collection
- Since:
- 2.4.0
 
- 
plusCreate a Collection as a union of a Collection and an Iterable. If the left collection is a Set, then the returned collection will be a Set otherwise a List. This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- the left Collection
- right- the right Iterable
- Returns:
- the merged Collection
- Since:
- 1.8.7
- See Also:
 
- 
plusCreate a List as a union of a List and an Iterable. This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- the left List
- right- the right Iterable
- Returns:
- the merged List
- Since:
- 2.4.0
- See Also:
 
- 
plusCreate a List as a union of a List and a Collection. This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- the left List
- right- the right Collection
- Returns:
- the merged List
- Since:
- 2.4.0
- See Also:
 
- 
plusCreate a Set as a union of a Set and an Iterable. This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- the left Set
- right- the right Iterable
- Returns:
- the merged Set
- Since:
- 2.4.0
- See Also:
 
- 
plusCreate a Set as a union of a Set and a Collection. This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- the left Set
- right- the right Collection
- Returns:
- the merged Set
- Since:
- 2.4.0
- See Also:
 
- 
plusCreate a SortedSet as a union of a SortedSet and an Iterable. This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- the left SortedSet
- right- the right Iterable
- Returns:
- the merged SortedSet
- Since:
- 2.4.0
- See Also:
 
- 
plusCreate a SortedSet as a union of a SortedSet and a Collection. This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- the left SortedSet
- right- the right Collection
- Returns:
- the merged SortedSet
- Since:
- 2.4.0
- See Also:
 
- 
plusCreates a new List by inserting all the elements in the specified array to the elements from the original List at the specified index. Shifts the element currently at that index (if any) and any subsequent elements to the right (increasing their indices). The new elements will appear in the resulting List in the order that they occur in the original array. The behavior of this operation is undefined if the list or array operands are modified while the operation is in progress. The original list and array operands remain unchanged.def items = [1, 2, 3] def newItems = items.plus(2, 'a'..'c' as String[]) assert newItems == [1, 2, 'a', 'b', 'c', 3] assert items == [1, 2, 3] See alsoaddAllfor similar functionality with modify semantics, i.e. which performs the changes on the original list itself.- Parameters:
- self- an original list
- items- array containing elements to be merged with elements from the original list
- index- index at which to insert the first element from the specified array
- Returns:
- the new list
- Since:
- 1.8.1
- See Also:
 
- 
plusCreates a new List by inserting all the elements in the given additions List to the elements from the original List at the specified index. Shifts the element currently at that index (if any) and any subsequent elements to the right (increasing their indices). The new elements will appear in the resulting List in the order that they occur in the original lists. The behavior of this operation is undefined if the original lists are modified while the operation is in progress. The original lists remain unchanged.def items = [1, 2, 3] def newItems = items.plus(2, 'a'..'c') assert newItems == [1, 2, 'a', 'b', 'c', 3] assert items == [1, 2, 3] See alsoaddAllfor similar functionality with modify semantics, i.e. which performs the changes on the original list itself.- Parameters:
- self- an original List
- additions- a List containing elements to be merged with elements from the original List
- index- index at which to insert the first element from the given additions List
- Returns:
- the new list
- Since:
- 1.8.1
 
- 
plusCreates a new List by inserting all the elements in the given Iterable to the elements from this List at the specified index.- Parameters:
- self- an original list
- additions- an Iterable containing elements to be merged with the elements from the original List
- index- index at which to insert the first element from the given additions Iterable
- Returns:
- the new list
- Since:
- 1.8.7
- See Also:
 
- 
plusCreate a collection as a union of a Collection and an Object. If the collection is a Set, then the returned collection will be a Set otherwise a List. This operation will always create a new object for the result, while the operands remain unchanged.assert [1,2,3] == [1,2] + 3 - Parameters:
- left- a Collection
- right- an object to add/append
- Returns:
- the resulting Collection
- Since:
- 1.5.0
 
- 
plusCreate a collection as a union of an Iterable and an Object. If the iterable is a Set, then the returned collection will be a Set otherwise a List. This operation will always create a new object for the result, while the operands remain unchanged.assert [1,2,3] == [1,2] + 3 - Parameters:
- left- an Iterable
- right- an object to add/append
- Returns:
- the resulting Collection
- Since:
- 2.4.0
 
- 
plusCreate a List as a union of a List and an Object. This operation will always create a new object for the result, while the operands remain unchanged.assert [1,2,3] == [1,2] + 3 - Parameters:
- left- a List
- right- an object to add/append
- Returns:
- the resulting List
- Since:
- 2.4.0
 
- 
plusCreate a Set as a union of a Set and an Object. This operation will always create a new object for the result, while the operands remain unchanged.assert [1,2,3] == [1,2] + 3 - Parameters:
- left- a Set
- right- an object to add/append
- Returns:
- the resulting Set
- Since:
- 2.4.0
 
- 
plusCreate a SortedSet as a union of a SortedSet and an Object. This operation will always create a new object for the result, while the operands remain unchanged.assert [1,2,3] == [1,2] + 3 - Parameters:
- left- a SortedSet
- right- an object to add/append
- Returns:
- the resulting SortedSet
- Since:
- 2.4.0
 
- 
multiplyCreate a Collection composed of the elements of this Iterable, repeated a certain number of times. Note that for non-primitive elements, multiple references to the same instance will be added.assert [1,2,3,1,2,3] == [1,2,3] * 2 Note: if the Iterable happens to not support duplicates, e.g. a Set, then the method will effectively return a Collection with a single copy of the Iterable's items.- Parameters:
- self- an Iterable
- factor- the number of times to append
- Returns:
- the multiplied Collection
- Since:
- 2.4.0
 
- 
multiplyCreate a List composed of the elements of this Iterable, repeated a certain number of times. Note that for non-primitive elements, multiple references to the same instance will be added.assert [1,2,3,1,2,3] == [1,2,3] * 2 Note: if the Iterable happens to not support duplicates, e.g. a Set, then the method will effectively return a Collection with a single copy of the Iterable's items.- Parameters:
- self- a List
- factor- the number of times to append
- Returns:
- the multiplied List
- Since:
- 2.4.0
 
- 
intersectCreate a Collection composed of the intersection of both collections. Any elements that exist in both collections are added to the resultant collection. For collections of custom objects; the objects should implement java.lang.Comparableassert [4,5] == [1,2,3,4,5].intersect([4,5,6,7,8]) By default, Groovy uses aNumberAwareComparatorwhen determining if an element exists in both collections.- Parameters:
- left- a Collection
- right- a Collection
- Returns:
- a Collection as an intersection of both collections
- Since:
- 1.5.6
- See Also:
 
- 
intersectpublic static <T> Collection<T> intersect(Collection<T> left, Collection<T> right, Comparator<? super T> comparator) Create a Collection composed of the intersection of both collections. Any elements that exist in both collections are added to the resultant collection. For collections of custom objects; the objects should implement java.lang.Comparableassert [3,4] == [1,2,3,4].intersect([3,4,5,6], Comparator.naturalOrder()) assert [2,4] == [1,2,3,4].intersect([4,8,12,16,20], (x, y) -> x * x <=> y)def one = ['a', 'B', 'c', 'd'] def two = ['b', 'C', 'd', 'e'] def compareIgnoreCase = { a, b->a.toLowerCase()<=>b.toLowerCase() } assert one.intersect(two) == ['d'] assert two.intersect(one) == ['d'] assert one.intersect(two, compareIgnoreCase) == ['B', 'c', 'd'] assert two.intersect(one, compareIgnoreCase) == ['b', 'C', 'd']- Parameters:
- left- a Collection
- right- a Collection
- comparator- a Comparator
- Returns:
- a Collection as an intersection of both collections
- Since:
- 2.5.0
 
- 
intersectCreate a Collection composed of the intersection of both iterables. Any elements that exist in both iterables are added to the resultant collection. For iterables of custom objects; the objects should implement java.lang.Comparableassert [4,5] == [1,2,3,4,5].intersect([4,5,6,7,8]) By default, Groovy uses aNumberAwareComparatorwhen determining if an element exists in both collections.- Parameters:
- left- an Iterable
- right- an Iterable
- Returns:
- a Collection as an intersection of both iterables
- Since:
- 2.4.0
- See Also:
 
- 
intersectpublic static <T> Collection<T> intersect(Iterable<T> left, Iterable<T> right, Comparator<? super T> comparator) Create a Collection composed of the intersection of both iterables. Any elements that exist in both iterables are added to the resultant collection. For iterables of custom objects; the objects should implement java.lang.Comparableassert [3,4] == [1,2,3,4].intersect([3,4,5,6], Comparator.naturalOrder()) - Parameters:
- left- an Iterable
- right- an Iterable
- comparator- a Comparator
- Returns:
- a Collection as an intersection of both iterables
- Since:
- 2.5.0
 
- 
intersectCreate a Collection composed of the intersection of both iterables. Elements from teh first iterable which also occur (according to the comparator closure) in the second iterable are added to the result. If the closure takes a single parameter, the argument passed will be each element, and the closure should return a value used for comparison (either usingComparable.compareTo(java.lang.Object)orObject.equals(java.lang.Object)). If the closure takes two parameters, two items from the Iterator will be passed as arguments, and the closure should return an int value (with 0 indicating the items are deemed equal).def one = ['a', 'B', 'c', 'd'] def two = ['b', 'C', 'd', 'e'] def compareIgnoreCase = { it.toLowerCase() } assert one.intersect(two, compareIgnoreCase) == ['B', 'c', 'd'] assert two.intersect(one, compareIgnoreCase) == ['b', 'C', 'd']- Parameters:
- left- an Iterable
- right- an Iterable
- condition- a Closure used to determine unique items
- Returns:
- a Collection as an intersection of both iterables
- Since:
- 4.0.0
 
- 
intersectCreate a List composed of the intersection of a List and an Iterable. Any elements that exist in both iterables are added to the resultant collection.assert [4,5] == [1,2,3,4,5].intersect([4,5,6,7,8]) By default, Groovy uses aNumberAwareComparatorwhen determining if an element exists in both collections.- Parameters:
- left- a List
- right- an Iterable
- Returns:
- a List as an intersection of a List and an Iterable
- Since:
- 2.4.0
- See Also:
 
- 
intersectpublic static <T> List<T> intersect(List<T> left, Iterable<T> right, Comparator<? super T> comparator) Create a List composed of the intersection of a List and an Iterable. Any elements that exist in both iterables are added to the resultant collection.assert [3,4] == [1,2,3,4].intersect([3,4,5,6]) - Parameters:
- left- a List
- right- an Iterable
- comparator- a Comparator
- Returns:
- a List as an intersection of a List and an Iterable
- Since:
- 2.5.0
 
- 
intersectCreate a Set composed of the intersection of a Set and an Iterable. Any elements that exist in both iterables are added to the resultant collection.assert [4,5] as Set == ([1,2,3,4,5] as Set).intersect([4,5,6,7,8]) By default, Groovy uses aNumberAwareComparatorwhen determining if an element exists in both collections.- Parameters:
- left- a Set
- right- an Iterable
- Returns:
- a Set as an intersection of a Set and an Iterable
- Since:
- 2.4.0
- See Also:
 
- 
intersectpublic static <T> Set<T> intersect(Set<T> left, Iterable<T> right, Comparator<? super T> comparator) Create a Set composed of the intersection of a Set and an Iterable. Any elements that exist in both iterables are added to the resultant collection.assert [3,4] as Set == ([1,2,3,4] as Set).intersect([3,4,5,6], Comparator.naturalOrder()) - Parameters:
- left- a Set
- right- an Iterable
- comparator- a Comparator
- Returns:
- a Set as an intersection of a Set and an Iterable
- Since:
- 2.5.0
 
- 
intersectCreate a SortedSet composed of the intersection of a SortedSet and an Iterable. Any elements that exist in both iterables are added to the resultant collection.assert [4,5] as SortedSet == ([1,2,3,4,5] as SortedSet).intersect([4,5,6,7,8]) By default, Groovy uses aNumberAwareComparatorwhen determining if an element exists in both collections.- Parameters:
- left- a SortedSet
- right- an Iterable
- Returns:
- a Set as an intersection of a SortedSet and an Iterable
- Since:
- 2.4.0
- See Also:
 
- 
intersectpublic static <T> SortedSet<T> intersect(SortedSet<T> left, Iterable<T> right, Comparator<? super T> comparator) Create a SortedSet composed of the intersection of a SortedSet and an Iterable. Any elements that exist in both iterables are added to the resultant collection.assert [4,5] as SortedSet == ([1,2,3,4,5] as SortedSet).intersect([4,5,6,7,8]) - Parameters:
- left- a SortedSet
- right- an Iterable
- comparator- a Comparator
- Returns:
- a Set as an intersection of a SortedSet and an Iterable
- Since:
- 2.5.0
 
- 
intersectCreate a Map composed of the intersection of both maps. Any entries that exist in both maps are added to the resultant map.assert [4:4,5:5] == [1:1,2:2,3:3,4:4,5:5].intersect([4:4,5:5,6:6,7:7,8:8]) assert [1: 1, 2: 2, 3: 3, 4: 4].intersect( [1: 1.0, 2: 2, 5: 5] ) == [1:1, 2:2] - Parameters:
- left- a map
- right- a map
- Returns:
- a Map as an intersection of both maps
- Since:
- 1.7.4
 
- 
disjointReturnstrueif the intersection of two iterables is empty.assert [1,2,3].disjoint([3,4,5]) == false assert [1,2].disjoint([3,4]) == true - Parameters:
- left- an Iterable
- right- an Iterable
- Returns:
- boolean   trueif the intersection of two iterables is empty,falseotherwise.
- Since:
- 2.4.0
 
- 
chopChops the array into pieces, returning lists with sizes corresponding to the supplied chop sizes. If the array isn't large enough, truncated (possibly empty) pieces are returned. Using a chop size of -1 will cause that piece to contain all remaining items from the array.- Parameters:
- self- an Array to be chopped
- chopSizes- the sizes for the returned pieces
- Returns:
- a list of lists chopping the original array elements into pieces determined by chopSizes
- Since:
- 2.5.2
- See Also:
 
- 
chopChops the Iterable into pieces, returning lists with sizes corresponding to the supplied chop sizes. If the Iterable isn't large enough, truncated (possibly empty) pieces are returned. Using a chop size of -1 will cause that piece to contain all remaining items from the Iterable.Example usage: assert [1, 2, 3, 4].chop(1) == [[1]] assert [1, 2, 3, 4].chop(1,-1) == [[1], [2, 3, 4]] assert ('a'..'h').chop(2, 4) == [['a', 'b'], ['c', 'd', 'e', 'f']] assert ['a', 'b', 'c', 'd', 'e'].chop(3) == [['a', 'b', 'c']] assert ['a', 'b', 'c', 'd', 'e'].chop(1, 2, 3) == [['a'], ['b', 'c'], ['d', 'e']] assert ['a', 'b', 'c', 'd', 'e'].chop(1, 2, 3, 3, 3) == [['a'], ['b', 'c'], ['d', 'e'], [], []]- Parameters:
- self- an Iterable to be chopped
- chopSizes- the sizes for the returned pieces
- Returns:
- a list of lists chopping the original iterable into pieces determined by chopSizes
- Since:
- 2.5.2
- See Also:
 
- 
chopChops the iterator items into pieces, returning lists with sizes corresponding to the supplied chop sizes. If the iterator is exhausted early, truncated (possibly empty) pieces are returned. Using a chop size of -1 will cause that piece to contain all remaining items from the iterator.- Parameters:
- self- an Iterator to be chopped
- chopSizes- the sizes for the returned pieces
- Returns:
- a list of lists chopping the original iterator elements into pieces determined by chopSizes
- Since:
- 2.5.2
 
- 
equalspublic static boolean equals(int[] left, int[] right) Compare the contents of this array to the contents of the given array.- Parameters:
- left- an int array
- right- the array being compared
- Returns:
- true if the contents of both arrays are equal.
- Since:
- 1.5.0
 
- 
equalsDetermines if the contents of this array are equal to the contents of the given list, in the same order. This returnsfalseif either collection isnull.- Parameters:
- left- an array
- right- the List being compared
- Returns:
- true if the contents of both collections are equal
- Since:
- 1.5.0
 
- 
equalsDetermines if the contents of this list are equal to the contents of the given array in the same order. This returnsfalseif either collection isnull.assert [1, "a"].equals( [ 1, "a" ] as Object[] ) - Parameters:
- left- a List
- right- the Object[] being compared to
- Returns:
- true if the contents of both collections are equal
- Since:
- 1.5.0
 
- 
equalsCompare the contents of two Lists. Order matters. If numbers exist in the Lists, then they are compared as numbers, for example 2 == 2L. If both lists arenull, the result is true; otherwise if either list isnull, the result isfalse.assert ["a", 2].equals(["a", 2]) assert ![2, "a"].equals("a", 2) assert [2.0, "a"].equals(2L, "a") // number comparison at work- Parameters:
- left- a List
- right- the List being compared to
- Returns:
- boolean   trueif the contents of both lists are identical,falseotherwise.
- Since:
- 1.0
 
- 
equalsCompare the contents of two Sets for equality using Groovy's coercion rules.Returns true if the two sets have the same size, and every member of the specified set is contained in this set (or equivalently, every member of this set is contained in the specified set). If numbers exist in the sets, then they are compared as numbers, for example 2 == 2L. If both sets are null, the result is true; otherwise if either set isnull, the result isfalse. Example usage:Set s1 = ["a", 2] def s2 = [2, 'a'] as Set Set s3 = [3, 'a'] def s4 = [2.0, 'a'] as Set def s5 = [2L, 'a'] as Set assert s1.equals(s2) assert !s1.equals(s3) assert s1.equals(s4) assert s1.equals(s5) - Parameters:
- self- a Set
- other- the Set being compared to
- Returns:
- true if the contents of both sets are identical
- Since:
- 1.8.0
 
- 
equalsCompares two Maps treating coerced numerical values as identical.Example usage: assert [a:2, b:3] == [a:2L, b:3.0] - Parameters:
- self- this Map
- other- the Map being compared to
- Returns:
- true if the contents of both maps are identical
- Since:
- 1.8.0
 
- 
minusCreate a Set composed of the elements of the first Set minus the elements of the given Collection.- Parameters:
- self- a Set object
- removeMe- the items to remove from the Set
- Returns:
- the resulting Set
- Since:
- 1.5.0
 
- 
minusCreate a Set composed of the elements of the first Set minus the elements from the given Iterable.- Parameters:
- self- a Set object
- removeMe- the items to remove from the Set
- Returns:
- the resulting Set
- Since:
- 1.8.7
 
- 
minusCreate a Set composed of the elements of the first Set minus the given element.- Parameters:
- self- a Set object
- removeMe- the element to remove from the Set
- Returns:
- the resulting Set
- Since:
- 1.5.0
 
- 
minusCreate a SortedSet composed of the elements of the first SortedSet minus the elements of the given Collection.- Parameters:
- self- a SortedSet object
- removeMe- the items to remove from the SortedSet
- Returns:
- the resulting SortedSet
- Since:
- 2.4.0
 
- 
minusCreate a SortedSet composed of the elements of the first SortedSet minus the elements of the given Iterable.- Parameters:
- self- a SortedSet object
- removeMe- the items to remove from the SortedSet
- Returns:
- the resulting SortedSet
- Since:
- 2.4.0
 
- 
minusCreate a SortedSet composed of the elements of the first SortedSet minus the given element.- Parameters:
- self- a SortedSet object
- removeMe- the element to remove from the SortedSet
- Returns:
- the resulting SortedSet
- Since:
- 2.4.0
 
- 
minusCreate a new array composed of the elements of the first array minus the elements of the given Iterable.Integer[] ints = [1, 2, 3, 1] List<Integer> nope = [1, 3] def result = ints - nope assert result.class == Integer[] assert result == new Integer[]{2} Integer[] none = [] result = none - 123 assert result !== none assert result.length == 0 assert result.class == Integer[]- Parameters:
- self- an array
- removeMe- an Iterable of elements to remove
- Returns:
- an array with the supplied elements removed
- Since:
- 1.5.5
 
- 
minusCreate a new array composed of the elements of the first array minus the elements of the given array.Integer[] ints = [1, 2, 3, 1] Integer[] nope = [1, 3] def result = ints - nope assert result.class == Integer[] assert result == new Integer[]{2} Integer[] none = [] result = none - 123 assert result !== none assert result.length == 0 assert result.class == Integer[]- Parameters:
- self- an array
- removeMe- an array of elements to remove
- Returns:
- an array with the supplied elements removed
- Since:
- 1.5.5
 
- 
minusCreate a List composed of the elements of the first list minus every occurrence of elements of the given Collection.assert [1, "a", true, true, false, 5.3] - [true, 5.3] == [1, "a", false] - Parameters:
- self- a List
- removeMe- a Collection of elements to remove
- Returns:
- a List with the given elements removed
- Since:
- 1.0
 
- 
minusCreate a new Collection composed of the elements of the first Collection minus every occurrence of elements of the given Collection.assert [1, "a", true, true, false, 5.3] - [true, 5.3] == [1, "a", false] - Parameters:
- self- a Collection
- removeMe- a Collection of elements to remove
- Returns:
- a Collection with the given elements removed
- Since:
- 2.4.0
 
- 
minusCreate a new List composed of the elements of the first List minus every occurrence of elements of the given Iterable.assert [1, "a", true, true, false, 5.3] - [true, 5.3] == [1, "a", false] - Parameters:
- self- a List
- removeMe- an Iterable of elements to remove
- Returns:
- a new List with the given elements removed
- Since:
- 1.8.7
 
- 
minusCreate a new Collection composed of the elements of the first Iterable minus every occurrence of elements of the given Iterable.assert [1, "a", true, true, false, 5.3] - [true, 5.3] == [1, "a", false] - Parameters:
- self- an Iterable
- removeMe- an Iterable of elements to remove
- Returns:
- a new Collection with the given elements removed
- Since:
- 2.4.0
 
- 
minusCreate a new Collection composed of the elements of the first Iterable minus every matching occurrence as determined by the condition closure of elements of the given Iterable.assert ['a', 'B', 'c', 'D', 'E'].minus(['b', 'C', 'D']) { it.toLowerCase() } == ['a', 'E']- Parameters:
- self- an Iterable
- removeMe- an Iterable of elements to remove
- condition- a Closure used to determine unique items
- Returns:
- a new Collection with the given elements removed
- Since:
- 4.0.0
 
- 
minuspublic static <T> Collection<T> minus(Iterable<T> self, Iterable<?> removeMe, Comparator<? super T> comparator) Create a new Collection composed of the elements of the first Iterable minus every matching occurrence as determined by the condition comparator of elements of the given Iterable.assert ['a', 'B', 'c', 'D', 'E'].minus(['b', 'C', 'D'], (i, j) -> i.toLowerCase() <=> j.toLowerCase()) == ['a', 'E']- Parameters:
- self- an Iterable
- removeMe- an Iterable of elements to remove
- comparator- a Comparator
- Returns:
- a new Collection with the given elements removed
- Since:
- 4.0.0
 
- 
minusCreate a new List composed of the elements of the first List minus every occurrence of the given element to remove.assert ["a", 5, 5, true] - 5 == ["a", true] - Parameters:
- self- a List object
- removeMe- an element to remove from the List
- Returns:
- the resulting List with the given element removed
- Since:
- 1.0
 
- 
minusCreate a new Collection composed of the elements of the first Iterable minus every occurrence of the given element to remove.assert ["a", 5, 5, true] - 5 == ["a", true] - Parameters:
- self- an Iterable object
- removeMe- an element to remove from the Iterable
- Returns:
- the resulting Collection with the given element removed
- Since:
- 2.4.0
 
- 
minusCreate a new array composed of the elements of the given array minus every occurrence the given object.Integer[] ints = [1, 2, 3, 1] def result = ints - 1 assert result.class == Integer[] assert result == new Integer[]{2, 3} Integer[] none = [] result = none - '1' assert result !== none assert result.length == 0 assert result.class == Integer[]- Parameters:
- self- an array
- removeMe- an element to remove from the array
- Returns:
- a new array with the operand removed
- Since:
- 1.5.5
 
- 
minusCreate a Map composed of the entries of the first map minus the entries of the given map.- Parameters:
- self- a map object
- removeMe- the entries to remove from the map
- Returns:
- the resulting map
- Since:
- 1.7.4
 
- 
flattenFlatten a Collection. This Collection and any nested arrays or collections have their contents (recursively) added to the new collection.assert [1,2,3,4,5] == [1,[2,3],[[4]],[],5].flatten() - Parameters:
- self- a Collection to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an Iterable. This Iterable and any nested arrays or collections have their contents (recursively) added to the new collection.assert [1,2,3,4,5] == [1,[2,3],[[4]],[],5].flatten() - Parameters:
- self- an Iterable to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten a List. This List and any nested arrays or collections have their contents (recursively) added to the new List.assert [1,2,3,4,5] == [1,[2,3],[[4]],[],5].flatten() - Parameters:
- self- a List to flatten
- Returns:
- a flattened List
- Since:
- 2.4.0
 
- 
flattenFlatten a Set. This Set and any nested arrays or collections have their contents (recursively) added to the new Set.assert [1,2,3,4,5] as Set == ([1,[2,3],[[4]],[],5] as Set).flatten() - Parameters:
- self- a Set to flatten
- Returns:
- a flattened Set
- Since:
- 2.4.0
 
- 
flattenFlatten a SortedSet. This SortedSet and any nested arrays or collections have their contents (recursively) added to the new SortedSet.Set nested = [[0,1],[2],3,[4],5] SortedSet sorted = new TreeSet({ a, b->(a instanceof List ? a[0] : a)<=>(b instanceof List ? b[0] : b) } as Comparator) sorted.addAll(nested) assert [0,1,2,3,4,5] as SortedSet == sorted.flatten()- Parameters:
- self- a SortedSet to flatten
- Returns:
- a flattened SortedSet
- Since:
- 2.4.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- an Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- a boolean Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- a byte Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- a char Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- a short Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- an int Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- a long Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- a float Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an array. This array and any nested arrays or collections have their contents (recursively) added to the new collection.- Parameters:
- self- a double Array to flatten
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
flattenFlatten an Iterable. This Iterable and any nested arrays or collections have their contents (recursively) added to the new collection. For any non-Array, non-Collection object which represents some sort of collective type, the supplied closure should yield the contained items; otherwise, the closure should just return any element which corresponds to a leaf.- Parameters:
- self- an Iterable
- flattenUsing- a closure to determine how to flatten non-Array, non-Collection elements
- Returns:
- a flattened Collection
- Since:
- 1.6.0
 
- 
leftShiftOverloads the left shift operator to provide an easy way to append objects to a Collection.def list = [1,2] list << 3 assert list == [1,2,3] - Parameters:
- self- a Collection
- value- an Object to be added to the collection.
- Returns:
- same collection, after the value was added to it.
- Since:
- 1.0
 
- 
leftShiftOverloads the left shift operator to provide an easy way to append objects to a List.def list = [1,2] list << 3 assert list == [1,2,3] - Parameters:
- self- a List
- value- an Object to be added to the List.
- Returns:
- same List, after the value was added to it.
- Since:
- 2.4.0
 
- 
leftShiftOverloads the left shift operator to provide an easy way to append objects to a Set.def set = [1,2] as Set set << 3 assert set == [1,2,3] as Set - Parameters:
- self- a Set
- value- an Object to be added to the Set.
- Returns:
- same Set, after the value was added to it.
- Since:
- 2.4.0
 
- 
leftShiftOverloads the left shift operator to provide an easy way to append objects to a SortedSet.def set = [1,2] as SortedSet set << 3 assert set == [1,2,3] as SortedSet - Parameters:
- self- a SortedSet
- value- an Object to be added to the SortedSet.
- Returns:
- same SortedSet, after the value was added to it.
- Since:
- 2.4.0
 
- 
leftShiftpublic static <T> BlockingQueue<T> leftShift(BlockingQueue<T> self, T value) throws InterruptedException Overloads the left shift operator to provide an easy way to append objects to a BlockingQueue. In case of bounded queue the method will block till space in the queue become availabledef list = new java.util.concurrent.LinkedBlockingQueue () list << 3 << 2 << 1 assert list.iterator().collect{it} == [3,2,1]- Parameters:
- self- a Collection
- value- an Object to be added to the collection.
- Returns:
- same collection, after the value was added to it.
- Throws:
- InterruptedException
- Since:
- 1.7.1
 
- 
leftShiftOverloads the left shift operator to provide an easy way to append Map.Entry values to a Map.- Parameters:
- self- a Map
- entry- a Map.Entry to be added to the Map.
- Returns:
- same map, after the value has been added to it.
- Since:
- 1.6.0
 
- 
leftShiftOverloads the left shift operator to provide an easy way to put one maps entries into another map. This allows the compact syntaxmap1 << map2; otherwise it's just a synonym forputAllthough it returns the original map rather than being avoidmethod. Example usage:def map = [a:1, b:2] map << [c:3, d:4] assert map == [a:1, b:2, c:3, d:4] - Parameters:
- self- a Map
- other- another Map whose entries should be added to the original Map.
- Returns:
- same map, after the values have been added to it.
- Since:
- 1.7.2
 
- 
leftShiftImplementation of the left shift operator for integral types. Non-integral Number types throw UnsupportedOperationException.- Parameters:
- self- a Number object
- operand- the shift distance by which to left shift the number
- Returns:
- the resulting number
- Since:
- 1.5.0
 
- 
rightShiftImplementation of the right shift operator for integral types. Non-integral Number types throw UnsupportedOperationException.- Parameters:
- self- a Number object
- operand- the shift distance by which to right shift the number
- Returns:
- the resulting number
- Since:
- 1.5.0
 
- 
rightShiftUnsignedImplementation of the right shift (unsigned) operator for integral types. Non-integral Number types throw UnsupportedOperationException.- Parameters:
- self- a Number object
- operand- the shift distance by which to right shift (unsigned) the number
- Returns:
- the resulting number
- Since:
- 1.5.0
 
- 
getAtSupport the subscript operator with a range for a byte array- Parameters:
- array- a byte array
- range- a range indicating the indices for the items to retrieve
- Returns:
- list of the retrieved bytes
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a range for a char array- Parameters:
- array- a char array
- range- a range indicating the indices for the items to retrieve
- Returns:
- list of the retrieved chars
- Since:
- 1.5.0
 
- 
getAtSupport the subscript operator with a range for a short array- Parameters:
- array- a short array
- range- a range indicating the indices for the items to retrieve
- Returns:
- list of the retrieved shorts
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a range for an int array- Parameters:
- array- an int array
- range- a range indicating the indices for the items to retrieve
- Returns:
- list of the ints at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a range for a long array- Parameters:
- array- a long array
- range- a range indicating the indices for the items to retrieve
- Returns:
- list of the retrieved longs
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a range for a float array- Parameters:
- array- a float array
- range- a range indicating the indices for the items to retrieve
- Returns:
- list of the retrieved floats
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a range for a double array- Parameters:
- array- a double array
- range- a range indicating the indices for the items to retrieve
- Returns:
- list of the retrieved doubles
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a range for a boolean array- Parameters:
- array- a boolean array
- range- a range indicating the indices for the items to retrieve
- Returns:
- list of the retrieved booleans
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an IntRange for a byte array- Parameters:
- array- a byte array
- range- an IntRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved bytes
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an IntRange for a char array- Parameters:
- array- a char array
- range- an IntRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved chars
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an IntRange for a short array- Parameters:
- array- a short array
- range- an IntRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved shorts
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an IntRange for an int array- Parameters:
- array- an int array
- range- an IntRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved ints
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an IntRange for a long array- Parameters:
- array- a long array
- range- an IntRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved longs
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an IntRange for a float array- Parameters:
- array- a float array
- range- an IntRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved floats
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an IntRange for a double array- Parameters:
- array- a double array
- range- an IntRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved doubles
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an IntRange for a boolean array- Parameters:
- array- a boolean array
- range- an IntRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved booleans
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an ObjectRange for a byte array- Parameters:
- array- a byte array
- range- an ObjectRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved bytes
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an ObjectRange for a char array- Parameters:
- array- a char array
- range- an ObjectRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved chars
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an ObjectRange for a short array- Parameters:
- array- a short array
- range- an ObjectRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved shorts
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an ObjectRange for an int array- Parameters:
- array- an int array
- range- an ObjectRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved ints
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an ObjectRange for a long array- Parameters:
- array- a long array
- range- an ObjectRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved longs
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an ObjectRange for a float array- Parameters:
- array- a float array
- range- an ObjectRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved floats
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an ObjectRange for a double array- Parameters:
- array- a double array
- range- an ObjectRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved doubles
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with an ObjectRange for a byte array- Parameters:
- array- a byte array
- range- an ObjectRange indicating the indices for the items to retrieve
- Returns:
- list of the retrieved bytes
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a collection for a byte array- Parameters:
- array- a byte array
- indices- a collection of indices for the items to retrieve
- Returns:
- list of the bytes at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a collection for a char array- Parameters:
- array- a char array
- indices- a collection of indices for the items to retrieve
- Returns:
- list of the chars at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a collection for a short array- Parameters:
- array- a short array
- indices- a collection of indices for the items to retrieve
- Returns:
- list of the shorts at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a collection for an int array- Parameters:
- array- an int array
- indices- a collection of indices for the items to retrieve
- Returns:
- list of the ints at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a collection for a long array- Parameters:
- array- a long array
- indices- a collection of indices for the items to retrieve
- Returns:
- list of the longs at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a collection for a float array- Parameters:
- array- a float array
- indices- a collection of indices for the items to retrieve
- Returns:
- list of the floats at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a collection for a double array- Parameters:
- array- a double array
- indices- a collection of indices for the items to retrieve
- Returns:
- list of the doubles at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator with a collection for a boolean array- Parameters:
- array- a boolean array
- indices- a collection of indices for the items to retrieve
- Returns:
- list of the booleans at the given indices
- Since:
- 1.0
 
- 
getAtSupport the subscript operator for a Bitset- Parameters:
- self- a BitSet
- index- index to retrieve
- Returns:
- value of the bit at the given index
- Since:
- 1.5.0
- See Also:
 
- 
getAtSupport retrieving a subset of a BitSet using a Range
- 
putAtSupport assigning a range of values with a single assignment statement.
- 
putAtSupport subscript-style assignment for a BitSet.- Parameters:
- self- a BitSet
- index- index of the entry to set
- value- value
- Since:
- 1.5.0
- See Also:
 
- 
sizepublic static int size(boolean[] array) Allows arrays to behave similar to collections.- Parameters:
- array- a boolean array
- Returns:
- the length of the array
- Since:
- 1.5.0
- See Also:
 
- 
sizepublic static int size(byte[] array) Allows arrays to behave similar to collections.- Parameters:
- array- a byte array
- Returns:
- the length of the array
- Since:
- 1.0
- See Also:
 
- 
sizepublic static int size(char[] array) Allows arrays to behave similar to collections.- Parameters:
- array- a char array
- Returns:
- the length of the array
- Since:
- 1.0
- See Also:
 
- 
sizepublic static int size(short[] array) Allows arrays to behave similar to collections.- Parameters:
- array- a short array
- Returns:
- the length of the array
- Since:
- 1.0
- See Also:
 
- 
sizepublic static int size(int[] array) Allows arrays to behave similar to collections.- Parameters:
- array- an int array
- Returns:
- the length of the array
- Since:
- 1.0
- See Also:
 
- 
sizepublic static int size(long[] array) Allows arrays to behave similar to collections.- Parameters:
- array- a long array
- Returns:
- the length of the array
- Since:
- 1.0
- See Also:
 
- 
sizepublic static int size(float[] array) Allows arrays to behave similar to collections.- Parameters:
- array- a float array
- Returns:
- the length of the array
- Since:
- 1.0
- See Also:
 
- 
sizepublic static int size(double[] array) Allows arrays to behave similar to collections.- Parameters:
- array- a double array
- Returns:
- the length of the array
- Since:
- 1.0
- See Also:
 
- 
toListConverts this array to a List of the same size, with each element added to the list.- Parameters:
- array- a byte array
- Returns:
- a list containing the contents of this array.
- Since:
- 1.0
 
- 
toListConverts this array to a List of the same size, with each element added to the list.- Parameters:
- array- a boolean array
- Returns:
- a list containing the contents of this array.
- Since:
- 1.6.0
 
- 
toListConverts this array to a List of the same size, with each element added to the list.- Parameters:
- array- a char array
- Returns:
- a list containing the contents of this array.
- Since:
- 1.0
 
- 
toListConverts this array to a List of the same size, with each element added to the list.- Parameters:
- array- a short array
- Returns:
- a list containing the contents of this array.
- Since:
- 1.0
 
- 
toListConverts this array to a List of the same size, with each element added to the list.- Parameters:
- array- an int array
- Returns:
- a list containing the contents of this array.
- Since:
- 1.0
 
- 
toListConverts this array to a List of the same size, with each element added to the list.- Parameters:
- array- a long array
- Returns:
- a list containing the contents of this array.
- Since:
- 1.0
 
- 
toListConverts this array to a List of the same size, with each element added to the list.- Parameters:
- array- a float array
- Returns:
- a list containing the contents of this array.
- Since:
- 1.0
 
- 
toListConverts this array to a List of the same size, with each element added to the list.- Parameters:
- array- a double array
- Returns:
- a list containing the contents of this array.
- Since:
- 1.0
 
- 
toSetConverts this array to a Set, with each unique element added to the set.- Parameters:
- array- a byte array
- Returns:
- a set containing the unique contents of this array.
- Since:
- 1.8.0
 
- 
toSetConverts this array to a Set, with each unique element added to the set.- Parameters:
- array- a boolean array
- Returns:
- a set containing the unique contents of this array.
- Since:
- 1.8.0
 
- 
toSetConverts this array to a Set, with each unique element added to the set.- Parameters:
- array- a char array
- Returns:
- a set containing the unique contents of this array.
- Since:
- 1.8.0
 
- 
toSetConverts this array to a Set, with each unique element added to the set.- Parameters:
- array- a short array
- Returns:
- a set containing the unique contents of this array.
- Since:
- 1.8.0
 
- 
toSetConverts this array to a Set, with each unique element added to the set.- Parameters:
- array- an int array
- Returns:
- a set containing the unique contents of this array.
- Since:
- 1.8.0
 
- 
toSetConverts this array to a Set, with each unique element added to the set.- Parameters:
- array- a long array
- Returns:
- a set containing the unique contents of this array.
- Since:
- 1.8.0
 
- 
toSetConverts this array to a Set, with each unique element added to the set.- Parameters:
- array- a float array
- Returns:
- a set containing the unique contents of this array.
- Since:
- 1.8.0
 
- 
toSetConverts this array to a Set, with each unique element added to the set.- Parameters:
- array- a double array
- Returns:
- a set containing the unique contents of this array.
- Since:
- 1.8.0
 
- 
toSetConvert a Collection to a Set. Always returns a new Set even if the Collection is already a Set.Example usage: def result = [1, 2, 2, 2, 3].toSet() assert result instanceof Set assert result == [1, 2, 3] as Set - Parameters:
- self- a collection
- Returns:
- a Set
- Since:
- 1.8.0
 
- 
toSetConvert an Iterable to a Set. Always returns a new Set even if the Iterable is already a Set.Example usage: def result = [1, 2, 2, 2, 3].toSet() assert result instanceof Set assert result == [1, 2, 3] as Set - Parameters:
- self- an Iterable
- Returns:
- a Set
- Since:
- 2.4.0
 
- 
toSetConvert an iterator to a Set. The iterator will become exhausted of elements after making this conversion.- Parameters:
- self- an iterator
- Returns:
- a Set
- Since:
- 1.8.0
 
- 
toSetConvert an enumeration to a Set.- Parameters:
- self- an enumeration
- Returns:
- a Set
- Since:
- 1.8.0
 
- 
primitiveArrayGetImplements the getAt(int) method for primitive type arrays.- Parameters:
- self- an array object
- idx- the index of interest
- Returns:
- the returned value from the array
- Since:
- 1.5.0
 
- 
primitiveArrayGetImplements the getAt(Range) method for primitive type arrays.- Parameters:
- self- an array object
- range- the range of indices of interest
- Returns:
- the returned values from the array corresponding to the range
- Since:
- 1.5.0
 
- 
primitiveArrayGetImplements the getAt(Collection) method for primitive type arrays. Each value in the collection argument is assumed to be a valid array index. The value at each index is then added to a list which is returned.- Parameters:
- self- an array object
- indices- the indices of interest
- Returns:
- the returned values from the array
- Since:
- 1.0
 
- 
primitiveArrayPutImplements the setAt(int idx) method for primitive type arrays.- Parameters:
- self- an object
- idx- the index of interest
- newValue- the new value to be put into the index of interest
- Returns:
- the added value
- Since:
- 1.5.0
 
- 
toBooleanIdentity conversion which returns Boolean.TRUE for a true Boolean and Boolean.FALSE for a false Boolean.- Parameters:
- self- a Boolean
- Returns:
- the original Boolean
- Since:
- 1.7.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array we are searching
- value- the value being searched for
- Returns:
- true if the array contains the value
- Since:
- 1.8.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array we are searching
- value- the value being searched for
- Returns:
- true if the array contains the value
- Since:
- 1.8.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array we are searching
- value- the value being searched for
- Returns:
- true if the array contains the value
- Since:
- 1.8.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array we are searching
- value- the value being searched for
- Returns:
- true if the array contains the value
- Since:
- 1.8.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array within which we count the number of occurrences
- value- the value being searched for
- Returns:
- the number of occurrences
- Since:
- 1.8.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array we are searching
- value- the value being searched for
- Returns:
- true if the array contains the value
- Since:
- 1.8.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array we are searching
- value- the value being searched for
- Returns:
- true if the array contains the value
- Since:
- 1.8.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array we are searching
- value- the value being searched for
- Returns:
- true if the array contains the value
- Since:
- 1.8.6
 
- 
containsChecks whether the array contains the given value.- Parameters:
- self- the array we are searching
- value- the value being searched for
- Returns:
- true if the array contains the value
- Since:
- 1.8.6
 
- 
toStringReturns the string representation of the given array.- Parameters:
- self- an array
- Returns:
- the string representation
- Since:
- 1.6.0
 
- 
toStringReturns the string representation of the given array.- Parameters:
- self- an array
- Returns:
- the string representation
- Since:
- 1.6.0
 
- 
toStringReturns the string representation of the given array.- Parameters:
- self- an array
- Returns:
- the string representation
- Since:
- 1.6.0
 
- 
toStringReturns the string representation of the given array.- Parameters:
- self- an array
- Returns:
- the string representation
- Since:
- 1.6.0
 
- 
toStringReturns the string representation of the given array.- Parameters:
- self- an array
- Returns:
- the string representation
- Since:
- 1.6.0
 
- 
toStringReturns the string representation of the given array.- Parameters:
- self- an array
- Returns:
- the string representation
- Since:
- 1.6.0
 
- 
toStringReturns the string representation of the given array.- Parameters:
- self- an array
- Returns:
- the string representation
- Since:
- 1.6.0
 
- 
toStringReturns the string representation of the given array.- Parameters:
- self- an array
- Returns:
- the string representation
- Since:
- 1.6.0
 
- 
toStringReturns the string representation of the given map.- Parameters:
- self- a Map
- Returns:
- the string representation
- Since:
- 1.0
- See Also:
 
- 
toMapStringReturns the string representation of this map. The string displays the contents of the map, i.e.[one:1, two:2, three:3].- Parameters:
- self- a Map
- Returns:
- the string representation
- Since:
- 1.0
 
- 
toMapStringReturns the string representation of this map. The string displays the contents of the map, i.e.[one:1, two:2, three:3].- Parameters:
- self- a Map
- maxSize- stop after approximately this many characters and append '...'
- Returns:
- the string representation
- Since:
- 1.0
 
- 
toStringReturns the string representation of the given collection. The string displays the contents of the collection, i.e.[1, 2, a].- Parameters:
- self- a Collection
- Returns:
- the string representation
- Since:
- 1.0
- See Also:
 
- 
toListStringReturns the string representation of the given list. The string displays the contents of the list, similar to a list literal, i.e.[1, 2, a].- Parameters:
- self- a Collection
- Returns:
- the string representation
- Since:
- 1.0
 
- 
toListStringReturns the string representation of the given list. The string displays the contents of the list, similar to a list literal, i.e.[1, 2, a].- Parameters:
- self- a Collection
- maxSize- stop after approximately this many characters and append '...'
- Returns:
- the string representation
- Since:
- 1.7.3
 
- 
toStringReturns the string representation of this array's contents.- Parameters:
- self- an Object[]
- Returns:
- the string representation
- Since:
- 1.0
- See Also:
 
- 
toArrayStringReturns the string representation of the given array. The string displays the contents of the array, similar to an array literal, i.e.{1, 2, "a"}.- Parameters:
- self- an Object[]
- Returns:
- the string representation
- Since:
- 1.0
 
- 
toStringCreate a String representation of this object.- Parameters:
- value- an object
- Returns:
- a string.
- Since:
- 1.0
 
- 
nextIncrement a Character by one.- Parameters:
- self- a Character
- Returns:
- an incremented Character
- Since:
- 1.5.7
 
- 
nextIncrement a Number by one.- Parameters:
- self- a Number
- Returns:
- an incremented Number
- Since:
- 1.0
 
- 
previousDecrement a Character by one.- Parameters:
- self- a Character
- Returns:
- a decremented Character
- Since:
- 1.5.7
 
- 
previousDecrement a Number by one.- Parameters:
- self- a Number
- Returns:
- a decremented Number
- Since:
- 1.0
 
- 
plusAdd a Character and a Number. The ordinal value of the Character is used in the addition (the ordinal value is the unicode value which for simple character sets is the ASCII value). This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- a Character
- right- a Number
- Returns:
- the Number corresponding to the addition of left and right
- Since:
- 1.0
- See Also:
 
- 
plusAdd a Number and a Character. The ordinal value of the Character is used in the addition (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Number
- right- a Character
- Returns:
- The Number corresponding to the addition of left and right
- Since:
- 1.0
- See Also:
 
- 
plusAdd one Character to another. The ordinal values of the Characters are used in the addition (the ordinal value is the unicode value which for simple character sets is the ASCII value). This operation will always create a new object for the result, while the operands remain unchanged.- Parameters:
- left- a Character
- right- a Character
- Returns:
- the Number corresponding to the addition of left and right
- Since:
- 1.0
- See Also:
 
- 
plusAppends a String to the literal of the Map instance.assert '[a:1] is a map' == [a:1] + ' is a map' - Parameters:
- left- a Map
- right- a String
- Returns:
- the concatenated string
- Since:
- 4.0.3
 
- 
plusAppends a GString to the literal of the Map instance.assert '[a:1] is a map' == [a:1] + " is ${'a'} map"- Parameters:
- left- a Map
- right- a GString
- Returns:
- the concatenated string
- Since:
- 4.0.3
 
- 
compareToCompare a Character and a Number. The ordinal value of the Character is used in the comparison (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- a Number
- Returns:
- the result of the comparison
- Since:
- 1.0
 
- 
compareToCompare a Number and a Character. The ordinal value of the Character is used in the comparison (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Number
- right- a Character
- Returns:
- the result of the comparison
- Since:
- 1.0
 
- 
compareToCompare two Characters. The ordinal values of the Characters are compared (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- a Character
- Returns:
- the result of the comparison
- Since:
- 1.0
 
- 
compareToCompare two Numbers. Equality (==) for numbers dispatches to this.- Parameters:
- left- a Number
- right- another Number to compare to
- Returns:
- the comparison of both numbers
- Since:
- 1.0
 
- 
minusSubtract a Number from a Character. The ordinal value of the Character is used in the subtraction (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- a Number
- Returns:
- the Number corresponding to the subtraction of right from left
- Since:
- 1.0
 
- 
minusSubtract a Character from a Number. The ordinal value of the Character is used in the subtraction (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Number
- right- a Character
- Returns:
- the Number corresponding to the subtraction of right from left
- Since:
- 1.0
 
- 
minusSubtract one Character from another. The ordinal values of the Characters is used in the comparison (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- a Character
- Returns:
- the Number corresponding to the subtraction of right from left
- Since:
- 1.0
 
- 
multiplyMultiply a Character by a Number. The ordinal value of the Character is used in the multiplication (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- a Number
- Returns:
- the Number corresponding to the multiplication of left by right
- Since:
- 1.0
 
- 
multiplyMultiply a Number by a Character. The ordinal value of the Character is used in the multiplication (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Number
- right- a Character
- Returns:
- the multiplication of left by right
- Since:
- 1.0
 
- 
multiplyMultiply two Characters. The ordinal values of the Characters are used in the multiplication (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- another Character
- Returns:
- the Number corresponding to the multiplication of left by right
- Since:
- 1.0
 
- 
multiplyMultiply a BigDecimal and a Double. Note: This method was added to enforce the Groovy rule of BigDecimal*Double == Double. Without this method, the multiply(BigDecimal) method in BigDecimal would respond and return a BigDecimal instead. Since BigDecimal is preferred over Number, the Number*Number method is not chosen as in older versions of Groovy.- Parameters:
- left- a BigDecimal
- right- a Double
- Returns:
- the multiplication of left by right
- Since:
- 1.0
 
- 
multiplyMultiply a BigDecimal and a BigInteger. Note: This method was added to enforce the Groovy rule of BigDecimal*long == long. Without this method, the multiply(BigDecimal) method in BigDecimal would respond and return a BigDecimal instead. Since BigDecimal is preferred over Number, the Number*Number method is not chosen as in older versions of Groovy. BigInteger is the fallback for all integer types in Groovy- Parameters:
- left- a BigDecimal
- right- a BigInteger
- Returns:
- the multiplication of left by right
- Since:
- 1.0
 
- 
isAtLeastCompare a BigDecimal to another. A fluent api style alias forcompareTo.- Parameters:
- left- a BigDecimal
- right- a BigDecimal
- Returns:
- true if left is equal to or bigger than right
- Since:
- 3.0.1
 
- 
isAtLeastCompare a BigDecimal to a String representing a number. A fluent api style alias forcompareTo.- Parameters:
- left- a BigDecimal
- right- a String representing a number
- Returns:
- true if left is equal to or bigger than the value represented by right
- Since:
- 3.0.1
 
- 
powerPower of a Number to a certain exponent. Called by the '**' operator.- Parameters:
- self- a Number
- exponent- a Number exponent
- Returns:
- a Number to the power of a certain exponent
- Since:
- 1.0
 
- 
powerPower of a BigDecimal to an integer certain exponent. If the exponent is positive, call the BigDecimal.pow(int) method to maintain precision. Called by the '**' operator.- Parameters:
- self- a BigDecimal
- exponent- an Integer exponent
- Returns:
- a Number to the power of the exponent
 
- 
powerPower of a BigInteger to an integer certain exponent. If the exponent is positive, call the BigInteger.pow(int) method to maintain precision. Called by the '**' operator.- Parameters:
- self- a BigInteger
- exponent- an Integer exponent
- Returns:
- a Number to the power of the exponent
 
- 
powerPower of an integer to an integer certain exponent. If the exponent is positive, convert to a BigInteger and call BigInteger.pow(int) method to maintain precision. Called by the '**' operator.- Parameters:
- self- an Integer
- exponent- an Integer exponent
- Returns:
- a Number to the power of the exponent
 
- 
powerPower of a long to an integer certain exponent. If the exponent is positive, convert to a BigInteger and call BigInteger.pow(int) method to maintain precision. Called by the '**' operator.- Parameters:
- self- a Long
- exponent- an Integer exponent
- Returns:
- a Number to the power of the exponent
 
- 
powerPower of a BigInteger to a BigInteger certain exponent. Called by the '**' operator.- Parameters:
- self- a BigInteger
- exponent- a BigInteger exponent
- Returns:
- a BigInteger to the power of the exponent
- Since:
- 2.3.8
 
- 
divDivide a Character by a Number. The ordinal value of the Character is used in the division (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- a Number
- Returns:
- the Number corresponding to the division of left by right
- Since:
- 1.0
 
- 
divDivide a Number by a Character. The ordinal value of the Character is used in the division (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Number
- right- a Character
- Returns:
- the Number corresponding to the division of left by right
- Since:
- 1.0
 
- 
divDivide one Character by another. The ordinal values of the Characters are used in the division (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- another Character
- Returns:
- the Number corresponding to the division of left by right
- Since:
- 1.0
 
- 
intdivInteger Divide a Character by a Number. The ordinal value of the Character is used in the division (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- a Number
- Returns:
- a Number (an Integer) resulting from the integer division operation
- Since:
- 1.0
 
- 
intdivInteger Divide a Number by a Character. The ordinal value of the Character is used in the division (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Number
- right- a Character
- Returns:
- a Number (an Integer) resulting from the integer division operation
- Since:
- 1.0
 
- 
intdivInteger Divide two Characters. The ordinal values of the Characters are used in the division (the ordinal value is the unicode value which for simple character sets is the ASCII value).- Parameters:
- left- a Character
- right- another Character
- Returns:
- a Number (an Integer) resulting from the integer division operation
- Since:
- 1.0
 
- 
intdivInteger Divide two Numbers.- Parameters:
- left- a Number
- right- another Number
- Returns:
- a Number (an Integer) resulting from the integer division operation
- Since:
- 1.0
 
- 
orBitwise OR together two numbers.- Parameters:
- left- a Number
- right- another Number to bitwise OR
- Returns:
- the bitwise OR of both Numbers
- Since:
- 1.0
 
- 
andBitwise AND together two Numbers.- Parameters:
- left- a Number
- right- another Number to bitwise AND
- Returns:
- the bitwise AND of both Numbers
- Since:
- 1.0
 
- 
andBitwise AND together two BitSets.- Parameters:
- left- a BitSet
- right- another BitSet to bitwise AND
- Returns:
- the bitwise AND of both BitSets
- Since:
- 1.5.0
 
- 
xorBitwise XOR together two BitSets. Called when the '^' operator is used between two bit sets.- Parameters:
- left- a BitSet
- right- another BitSet to bitwise XOR
- Returns:
- the bitwise XOR of both BitSets
- Since:
- 1.5.0
 
- 
bitwiseNegateBitwise NEGATE a BitSet.- Parameters:
- self- a BitSet
- Returns:
- the bitwise NEGATE of the BitSet
- Since:
- 1.5.0
 
- 
bitwiseNegateBitwise NEGATE a Number.- Parameters:
- left- a Number
- Returns:
- the bitwise NEGATE of the Number
- Since:
- 2.2.0
 
- 
orBitwise OR together two BitSets. Called when the '|' operator is used between two bit sets.- Parameters:
- left- a BitSet
- right- another BitSet to bitwise OR
- Returns:
- the bitwise OR of both BitSets
- Since:
- 1.5.0
 
- 
xorBitwise XOR together two Numbers. Called when the '^' operator is used.- Parameters:
- left- a Number
- right- another Number to bitwise XOR
- Returns:
- the bitwise XOR of both Numbers
- Since:
- 1.0
 
- 
modPerforms a division modulus operation. Called by the '%' operator.- Parameters:
- left- a Number
- right- another Number to mod
- Returns:
- the modulus result
- Since:
- 1.0
 
- 
unaryMinusNegates the number. Equivalent to the '-' operator when it precedes a single operand, i.e.-10- Parameters:
- left- a Number
- Returns:
- the negation of the number
- Since:
- 1.5.0
 
- 
unaryPlusReturns the number, effectively being a noop for numbers. Operator overloaded form of the '+' operator when it precedes a single operand, i.e.+10- Parameters:
- left- a Number
- Returns:
- the number
- Since:
- 2.2.0
 
- 
timesExecutes the closure this many times, starting from zero. The current index is passed to the closure each time. Example:10.times { println it }Prints the numbers 0 through 9.- Parameters:
- self- a Number
- closure- the closure to call a number of times
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time.- Parameters:
- self- a Number
- to- another Number to go up to
- closure- the closure to call
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time.- Parameters:
- self- a long
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time.- Parameters:
- self- a Long
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time.- Parameters:
- self- a float
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time.- Parameters:
- self- a Float
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time.- Parameters:
- self- a double
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time.- Parameters:
- self- a Double
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time. Example:0.upto( 10 ) { println it }Prints numbers 0 to 10- Parameters:
- self- a BigInteger
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
uptoIterates from this number up to the given number, inclusive, incrementing by one each time.0.1.upto( 10 ) { println it }Prints numbers 0.1, 1.1, 2.1... to 9.1- Parameters:
- self- a BigDecimal
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time.- Parameters:
- self- a Number
- to- another Number to go down to
- closure- the closure to call
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time.- Parameters:
- self- a long
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time.- Parameters:
- self- a Long
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time.- Parameters:
- self- a float
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time.- Parameters:
- self- a Float
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time.- Parameters:
- self- a double
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time.- Parameters:
- self- a Double
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time.- Parameters:
- self- a BigInteger
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
downtoIterates from this number down to the given number, inclusive, decrementing by one each time. Each number is passed to the closure. Example:10.5.downto(0) { println it }Prints numbers 10.5, 9.5 ... to 0.5.- Parameters:
- self- a BigDecimal
- to- the end number
- closure- the code to execute for each number
- Since:
- 1.0
 
- 
stepIterates from this number up to the given number using a step increment. Each intermediate number is passed to the given closure. Example:0.step( 10, 2 ) { println it }Prints even numbers 0 through 8.- Parameters:
- self- a Number to start with
- to- a Number to go up to, exclusive
- stepNumber- a Number representing the step increment
- closure- the closure to call
- Since:
- 1.0
 
- 
absGet the absolute value- Parameters:
- number- a Number
- Returns:
- the absolute value of that Number
- Since:
- 1.0
 
- 
absGet the absolute value- Parameters:
- number- a Long
- Returns:
- the absolute value of that Long
- Since:
- 1.0
 
- 
absGet the absolute value- Parameters:
- number- a Float
- Returns:
- the absolute value of that Float
- Since:
- 1.0
 
- 
absGet the absolute value- Parameters:
- number- a Double
- Returns:
- the absolute value of that Double
- Since:
- 1.0
 
- 
equalsIgnoreZeroSignCompares this object against the specified object returning the same result asFloat.equals(Object)but returning true if this object and the specified object are both zero and negative zero respectively or vice versa.- Since:
- 3.0.8
 
- 
equalsIgnoreZeroSignCompares this object against the specified object returning the same result asDouble.equals(Object)but returning true if this object and the specified object are both zero and negative zero respectively or vice versa.- Since:
- 3.0.8
 
- 
roundRound the value- Parameters:
- number- a Float
- Returns:
- the rounded value of that Float
- Since:
- 1.0
 
- 
roundRound the value- Parameters:
- number- a Float
- precision- the number of decimal places to keep
- Returns:
- the Float rounded to the number of decimal places specified by precision
- Since:
- 1.6.0
 
- 
truncTruncate the value- Parameters:
- number- a Float
- precision- the number of decimal places to keep
- Returns:
- the Float truncated to the number of decimal places specified by precision
- Since:
- 1.6.0
 
- 
truncTruncate the value- Parameters:
- number- a Float
- Returns:
- the Float truncated to 0 decimal places
- Since:
- 1.6.0
 
- 
roundRound the value- Parameters:
- number- a Double
- Returns:
- the rounded value of that Double
- Since:
- 1.0
 
- 
roundRound the value- Parameters:
- number- a Double
- precision- the number of decimal places to keep
- Returns:
- the Double rounded to the number of decimal places specified by precision
- Since:
- 1.6.4
 
- 
truncTruncate the value- Parameters:
- number- a Double
- Returns:
- the Double truncated to 0 decimal places
- Since:
- 1.6.4
 
- 
truncTruncate the value- Parameters:
- number- a Double
- precision- the number of decimal places to keep
- Returns:
- the Double truncated to the number of decimal places specified by precision
- Since:
- 1.6.4
 
- 
roundRound the valueNote that this method differs from BigDecimal.round(java.math.MathContext)which specifies the digits to retain starting from the leftmost nonzero digit. This method rounds the integral part to the nearest whole number.- Parameters:
- number- a BigDecimal
- Returns:
- the rounded value of that BigDecimal
- Since:
- 2.5.0
- See Also:
 
- 
roundRound the valueNote that this method differs from BigDecimal.round(java.math.MathContext)which specifies the digits to retain starting from the leftmost nonzero digit. This method operates on the fractional part of the number and the precision argument specifies the number of digits to the right of the decimal point to retain.- Parameters:
- number- a BigDecimal
- precision- the number of decimal places to keep
- Returns:
- a BigDecimal rounded to the number of decimal places specified by precision
- Since:
- 2.5.0
- See Also:
 
- 
truncTruncate the value- Parameters:
- number- a BigDecimal
- Returns:
- a BigDecimal truncated to 0 decimal places
- Since:
- 2.5.0
- See Also:
 
- 
truncTruncate the value- Parameters:
- number- a BigDecimal
- precision- the number of decimal places to keep
- Returns:
- a BigDecimal truncated to the number of decimal places specified by precision
- Since:
- 2.5.0
- See Also:
 
- 
isUpperCaseDetermine if a Character is uppercase. Synonym for 'Character.isUpperCase(this)'.- Parameters:
- self- a Character
- Returns:
- true if the character is uppercase
- Since:
- 1.5.7
- See Also:
 
- 
isLowerCaseDetermine if a Character is lowercase. Synonym for 'Character.isLowerCase(this)'.- Parameters:
- self- a Character
- Returns:
- true if the character is lowercase
- Since:
- 1.5.7
- See Also:
 
- 
isLetterDetermines if a character is a letter. Synonym for 'Character.isLetter(this)'.- Parameters:
- self- a Character
- Returns:
- true if the character is a letter
- Since:
- 1.5.7
- See Also:
 
- 
isDigitDetermines if a character is a digit. Synonym for 'Character.isDigit(this)'.- Parameters:
- self- a Character
- Returns:
- true if the character is a digit
- Since:
- 1.5.7
- See Also:
 
- 
isLetterOrDigitDetermines if a character is a letter or digit. Synonym for 'Character.isLetterOrDigit(this)'.- Parameters:
- self- a Character
- Returns:
- true if the character is a letter or digit
- Since:
- 1.5.7
- See Also:
 
- 
isWhitespaceDetermines if a character is a whitespace character. Synonym for 'Character.isWhitespace(this)'.- Parameters:
- self- a Character
- Returns:
- true if the character is a whitespace character
- Since:
- 1.5.7
- See Also:
 
- 
toUpperCaseConverts the character to uppercase. Synonym for 'Character.toUpperCase(this)'.- Parameters:
- self- a Character to convert
- Returns:
- the uppercase equivalent of the character, if any; otherwise, the character itself.
- Since:
- 1.5.7
- See Also:
 
- 
toLowerCaseConverts the character to lowercase. Synonym for 'Character.toLowerCase(this)'.- Parameters:
- self- a Character to convert
- Returns:
- the lowercase equivalent of the character, if any; otherwise, the character itself.
- Since:
- 1.5.7
- See Also:
 
- 
toIntegerTransform a Number into an Integer- Parameters:
- self- a Number
- Returns:
- an Integer
- Since:
- 1.0
 
- 
toLongTransform a Number into a Long- Parameters:
- self- a Number
- Returns:
- a Long
- Since:
- 1.0
 
- 
toFloatTransform a Number into a Float- Parameters:
- self- a Number
- Returns:
- a Float
- Since:
- 1.0
 
- 
toDoubleTransform a Number into a Double- Parameters:
- self- a Number
- Returns:
- a Double
- Since:
- 1.0
 
- 
toBigDecimalTransform a Number into a BigDecimal- Parameters:
- self- a Number
- Returns:
- a BigDecimal
- Since:
- 1.0
 
- 
asTypeTransform this number to the given type, using the 'as' operator. The following types are supported in addition to the defaultasType(java.lang.Object, java.lang.Class):- BigDecimal
- BigInteger
- Double
- Float
 - Parameters:
- self- this number
- c- the desired type of the transformed result
- Returns:
- an instance of the given type
- Since:
- 1.0
 
- 
toBigIntegerTransform this Number into a BigInteger.- Parameters:
- self- a Number
- Returns:
- a BigInteger
- Since:
- 1.0
 
- 
andLogical conjunction of two boolean operators.- Parameters:
- left- left operator
- right- right operator
- Returns:
- result of logical conjunction
- Since:
- 1.0
 
- 
orLogical disjunction of two boolean operators- Parameters:
- left- left operator
- right- right operator
- Returns:
- result of logical disjunction
- Since:
- 1.0
 
- 
impliesLogical implication of two boolean operators- Parameters:
- left- left operator
- right- right operator
- Returns:
- result of logical implication
- Since:
- 1.8.3
 
- 
xorExclusive disjunction of two boolean operators- Parameters:
- left- left operator
- right- right operator
- Returns:
- result of exclusive disjunction
- Since:
- 1.0
 
- 
runAfterAllows a simple syntax for using timers. This timer will execute the given closure after the given delay.- Parameters:
- timer- a timer object
- delay- the delay in milliseconds before running the closure code
- closure- the closure to invoke
- Returns:
- The timer task which has been scheduled.
- Since:
- 1.5.0
 
- 
eachByteTraverse through each byte of this Byte array. Alias for each.- Parameters:
- self- a Byte array
- closure- a closure
- Since:
- 1.5.5
- See Also:
 
- 
eachByteTraverse through each byte of this byte array. Alias for each.- Parameters:
- self- a byte array
- closure- a closure
- Since:
- 1.5.5
- See Also:
 
- 
findIndexOfIterates over the elements of an aggregate of items and returns the index of the first item that matches the condition specified in the closure.- Parameters:
- self- the iteration object over which to iterate
- condition- the matching condition
- Returns:
- an integer that is the index of the first matched object or -1 if no match was found
- Since:
- 1.0
 
- 
findIndexOfIterates over the elements of an aggregate of items, starting from a specified startIndex, and returns the index of the first item that matches the condition specified in the closure. Example (aggregate isChronoUnitenum values):import java.time.temporal.ChronoUnit def nameStartsWithM = { it.name().startsWith('M') } def first = ChronoUnit.findIndexOf(nameStartsWithM) def second = ChronoUnit.findIndexOf(first + 1, nameStartsWithM) def third = ChronoUnit.findIndexOf(second + 1, nameStartsWithM) Set units = [first, second, third] assert !units.contains(-1) // should have found 3 of MICROS, MILLIS, MINUTES, MONTHS, ... assert units.size() == 3 // just check size so as not to rely on order- Parameters:
- self- the iteration object over which to iterate
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- an integer that is the index of the first matched object or -1 if no match was found
- Since:
- 1.5.0
 
- 
findIndexOfIterates over the elements of an Iterator and returns the index of the first item that satisfies the condition specified by the closure.- Parameters:
- self- an Iterator
- condition- the matching condition
- Returns:
- an integer that is the index of the first matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findIndexOfIterates over the elements of an Iterator, starting from a specified startIndex, and returns the index of the first item that satisfies the condition specified by the closure.- Parameters:
- self- an Iterator
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- an integer that is the index of the first matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findIndexOfIterates over the elements of an Iterable and returns the index of the first item that satisfies the condition specified by the closure.- Parameters:
- self- an Iterable
- condition- the matching condition
- Returns:
- an integer that is the index of the first matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findIndexOfIterates over the elements of an Iterable, starting from a specified startIndex, and returns the index of the first item that satisfies the condition specified by the closure.- Parameters:
- self- an Iterable
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- an integer that is the index of the first matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findIndexOfIterates over the elements of an Array and returns the index of the first item that satisfies the condition specified by the closure.- Parameters:
- self- an Array
- condition- the matching condition
- Returns:
- an integer that is the index of the first matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findIndexOfIterates over the elements of an Array, starting from a specified startIndex, and returns the index of the first item that satisfies the condition specified by the closure.- Parameters:
- self- an Array
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- an integer that is the index of the first matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findLastIndexOfIterates over the elements of an aggregate of items and returns the index of the last item that matches the condition specified in the closure. Example (aggregate isChronoUnitenum values):import java.time.temporal.ChronoUnit def nameStartsWithM = { it.name().startsWith('M') } def first = ChronoUnit.findIndexOf(nameStartsWithM) def last = ChronoUnit.findLastIndexOf(nameStartsWithM) // should have found 2 unique index values for MICROS, MILLIS, MINUTES, MONTHS, ... assert first != -1 && last != -1 && first != last- Parameters:
- self- the iteration object over which to iterate
- condition- the matching condition
- Returns:
- an integer that is the index of the last matched object or -1 if no match was found
- Since:
- 1.5.2
 
- 
findLastIndexOfIterates over the elements of an aggregate of items, starting from a specified startIndex, and returns the index of the last item that matches the condition specified in the closure.- Parameters:
- self- the iteration object over which to iterate
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- an integer that is the index of the last matched object or -1 if no match was found
- Since:
- 1.5.2
 
- 
findLastIndexOfIterates over the elements of an Iterator and returns the index of the last item that matches the condition specified in the closure.- Parameters:
- self- an Iterator
- condition- the matching condition
- Returns:
- an integer that is the index of the last matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findLastIndexOfIterates over the elements of an Iterator, starting from a specified startIndex, and returns the index of the last item that matches the condition specified in the closure.- Parameters:
- self- an Iterator
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- an integer that is the index of the last matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findLastIndexOfIterates over the elements of an Iterable and returns the index of the last item that matches the condition specified in the closure.- Parameters:
- self- an Iterable
- condition- the matching condition
- Returns:
- an integer that is the index of the last matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findLastIndexOfIterates over the elements of an Iterable, starting from a specified startIndex, and returns the index of the last item that matches the condition specified in the closure.- Parameters:
- self- an Iterable
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- an integer that is the index of the last matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findLastIndexOfIterates over the elements of an Array and returns the index of the last item that matches the condition specified in the closure.- Parameters:
- self- an Array
- condition- the matching condition
- Returns:
- an integer that is the index of the last matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findLastIndexOfIterates over the elements of an Array, starting from a specified startIndex, and returns the index of the last item that matches the condition specified in the closure.- Parameters:
- self- an Array
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- an integer that is the index of the last matched object or -1 if no match was found
- Since:
- 2.5.0
 
- 
findIndexValuesIterates over the elements of an aggregate of items and returns the index values of the items that match the condition specified in the closure.- Parameters:
- self- the iteration object over which to iterate
- condition- the matching condition
- Returns:
- a list of numbers corresponding to the index values of all matched objects
- Since:
- 1.5.2
 
- 
findIndexValuesIterates over the elements of an aggregate of items, starting from a specified startIndex, and returns the index values of the items that match the condition specified in the closure.- Parameters:
- self- the iteration object over which to iterate
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- a list of numbers corresponding to the index values of all matched objects
- Since:
- 1.5.2
 
- 
findIndexValuesIterates over the elements of an Iterator and returns the index values of the items that match the condition specified in the closure.- Parameters:
- self- an Iterator
- condition- the matching condition
- Returns:
- a list of numbers corresponding to the index values of all matched objects
- Since:
- 2.5.0
 
- 
findIndexValuespublic static <T> List<Number> findIndexValues(Iterator<T> self, Number startIndex, Closure condition) Iterates over the elements of an Iterator, starting from a specified startIndex, and returns the index values of the items that match the condition specified in the closure.- Parameters:
- self- an Iterator
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- a list of numbers corresponding to the index values of all matched objects
- Since:
- 2.5.0
 
- 
findIndexValuesIterates over the elements of an Iterable and returns the index values of the items that match the condition specified in the closure.- Parameters:
- self- an Iterable
- condition- the matching condition
- Returns:
- a list of numbers corresponding to the index values of all matched objects
- Since:
- 2.5.0
 
- 
findIndexValuespublic static <T> List<Number> findIndexValues(Iterable<T> self, Number startIndex, Closure condition) Iterates over the elements of an Iterable, starting from a specified startIndex, and returns the index values of the items that match the condition specified in the closure.- Parameters:
- self- an Iterable
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- a list of numbers corresponding to the index values of all matched objects
- Since:
- 2.5.0
 
- 
findIndexValuesIterates over the elements of an Array and returns the index values of the items that match the condition specified in the closure.- Parameters:
- self- an Array
- condition- the matching condition
- Returns:
- a list of numbers corresponding to the index values of all matched objects
- Since:
- 2.5.0
 
- 
findIndexValuesIterates over the elements of an Array, starting from a specified startIndex, and returns the index values of the items that match the condition specified in the closure.- Parameters:
- self- an Array
- startIndex- start matching from this index
- condition- the matching condition
- Returns:
- a list of numbers corresponding to the index values of all matched objects
- Since:
- 2.5.0
 
- 
getRootLoaderIterates through the classloader parents until it finds a loader with a class named "org.codehaus.groovy.tools.RootLoader". If there is no such classnullwill be returned. The name is used for comparison because a direct comparison using == may fail as the class may be loaded through different classloaders.- Parameters:
- self- a ClassLoader
- Returns:
- the rootLoader for the ClassLoader
- Since:
- 1.5.0
- See Also:
 
- 
asTypeConverts a given object to a type. This method is used through the "as" operator and is overloadable as any other operator.- Parameters:
- obj- the object to convert
- type- the goal type
- Returns:
- the resulting object
- Since:
- 1.0
 
- 
newInstanceConvenience method to dynamically create a new instance of this class. Calls the default constructor.- Parameters:
- c- a class
- Returns:
- a new instance of this class
- Since:
- 1.0
 
- 
newInstanceHelper to construct a new instance from the given arguments. The constructor is called based on the number and types in the args array. UsenewInstance(null)or simplynewInstance()for the default (no-arg) constructor.- Parameters:
- c- a class
- args- the constructor arguments
- Returns:
- a new instance of this class.
- Since:
- 1.0
 
- 
getMetaClassAdds a "metaClass" property to all class objects so you can use the syntaxString.metaClass.myMethod = { println "foo" }- Parameters:
- c- The java.lang.Class instance
- Returns:
- An MetaClass instance
- Since:
- 1.5.0
 
- 
getMetaClassObtains a MetaClass for an object either from the registry or in the case of a GroovyObject from the object itself.- Parameters:
- obj- The object in question
- Returns:
- The MetaClass
- Since:
- 1.5.0
 
- 
getMetaClassObtains a MetaClass for an object either from the registry or in the case of a GroovyObject from the object itself.- Parameters:
- obj- The object in question
- Returns:
- The MetaClass
- Since:
- 1.6.0
 
- 
setMetaClassSets the metaclass for a given class.- Parameters:
- self- the class whose metaclass we wish to set
- metaClass- the new MetaClass
- Since:
- 1.6.0
 
- 
setMetaClassSets the metaclass for an object.- Parameters:
- self- the object whose metaclass we want to set
- metaClass- the new metaclass value
- Since:
- 1.6.0
 
- 
setMetaClassSets the metaclass for aGroovyObject.- Parameters:
- self- the object whose metaclass we want to set
- metaClass- the new metaclass value
- Since:
- 2.0.0
 
- 
metaClasspublic static MetaClass metaClass(Class self, @DelegatesTo(type="groovy.lang.ExpandoMetaClass.DefiningClosure",strategy=3) Closure closure) Sets/updates the metaclass for a given class to a closure.- Parameters:
- self- the class whose metaclass we wish to update
- closure- the closure representing the new metaclass
- Returns:
- the new metaclass value
- Throws:
- GroovyRuntimeException- if the metaclass can't be set for this class
- Since:
- 1.6.0
 
- 
metaClasspublic static MetaClass metaClass(Object self, @DelegatesTo(type="groovy.lang.ExpandoMetaClass.DefiningClosure",strategy=3) Closure closure) Sets/updates the metaclass for a given object to a closure.- Parameters:
- self- the object whose metaclass we wish to update
- closure- the closure representing the new metaclass
- Returns:
- the new metaclass value
- Throws:
- GroovyRuntimeException- if the metaclass can't be set for this object
- Since:
- 1.6.0
 
- 
iteratorAttempts to create an Iterator for the given object by first converting it to a Collection.- Parameters:
- a- an array
- Returns:
- an Iterator for the given Array.
- Since:
- 1.6.4
- See Also:
 
- 
iteratorAttempts to create an Iterator for the given object by first converting it to a Collection.- Parameters:
- o- an object
- Returns:
- an Iterator for the given Object.
- Since:
- 1.0
- See Also:
 
- 
iteratorAllows an Enumeration to behave like an Iterator. Note that theremove()method is unsupported since the underlying Enumeration does not provide a mechanism for removing items.- Parameters:
- enumeration- an Enumeration object
- Returns:
- an Iterator for the given Enumeration
- Since:
- 1.0
 
- 
iteratorAn identity function for iterators, supporting 'duck-typing' when trying to get an iterator for each object within a collection, some of which may already be iterators.- Parameters:
- self- an iterator object
- Returns:
- itself
- Since:
- 1.5.0
 
- 
bufferedReturns aBufferedIteratorthat allows examining the next element without consuming it.assert [1, 2, 3, 4].iterator().buffered().with { [head(), toList()] } == [1, [1, 2, 3, 4]]- Parameters:
- self- an iterator object
- Returns:
- a BufferedIterator wrapping self
- Since:
- 2.5.0
 
- 
bufferedIteratorReturns aBufferedIteratorthat allows examining the next element without consuming it.assert new LinkedHashSet([1,2,3,4]).bufferedIterator().with { [head(), toList()] } == [1, [1,2,3,4]]- Parameters:
- self- an iterable object
- Returns:
- a BufferedIterator for traversing self
- Since:
- 2.5.0
 
- 
bufferedIteratorReturns aBufferedIteratorthat allows examining the next element without consuming it.assert [1, 2, 3, 4].bufferedIterator().with { [head(), toList()] } == [1, [1, 2, 3, 4]]- Parameters:
- self- a list
- Returns:
- a BufferedIterator for traversing self
- Since:
- 2.5.0
 
- 
respondsToReturns an object satisfying Groovy truth if the implementing MetaClass responds to a method with the given name and arguments types. Note that this method's return value is based on realised methods and does not take into account objects or classes that implement invokeMethod or methodMissing This method is "safe" in that it will always return a value and never throw an exception - Parameters:
- self- The object to inspect
- name- The name of the method of interest
- argTypes- The argument types to match against
- Returns:
- A List of MetaMethods matching the argument types which will be empty if no matching methods exist
- Since:
- 1.6.0
- See Also:
 
- 
respondsToReturns an object satisfying Groovy truth if the implementing MetaClass responds to a method with the given name regardless of the arguments. Note that this method's return value is based on realised methods and does not take into account objects or classes that implement invokeMethod or methodMissing This method is "safe" in that it will always return a value and never throw an exception - Parameters:
- self- The object to inspect
- name- The name of the method of interest
- Returns:
- A List of MetaMethods matching the given name or an empty list if no matching methods exist
- Since:
- 1.6.1
- See Also:
 
- 
hasPropertyReturns true of the implementing MetaClass has a property of the given name Note that this method will only return true for realised properties and does not take into account implementation of getProperty or propertyMissing - Parameters:
- self- The object to inspect
- name- The name of the property of interest
- Returns:
- The found MetaProperty or null if it doesn't exist
- Since:
- 1.6.1
- See Also:
 
- 
withTraitsDynamically wraps an instance into something which implements the supplied trait classes. It is guaranteed that the returned object will implement the trait interfaces, but the original type of the object is lost (replaced with a proxy).- Parameters:
- self- object to be wrapped
- traits- a list of trait classes
- Returns:
- a proxy implementing the trait interfaces
 
- 
swapSwaps two elements at the specified positions.Example: assert [1, 3, 2, 4] == [1, 2, 3, 4].swap(1, 2) - Parameters:
- self- a List
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
- See Also:
 
- 
swappublic static <T> T[] swap(T[] self, int i, int j) Swaps two elements at the specified positions.Example: assert (["a", "c", "b", "d"] as String[]) == (["a", "b", "c", "d"] as String[]).swap(1, 2) - Parameters:
- self- an array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
swappublic static boolean[] swap(boolean[] self, int i, int j) Swaps two elements at the specified positions.Example: assert ([false, true, false, true] as boolean[]) == ([false, false, true, true] as boolean[]).swap(1, 2) - Parameters:
- self- a boolean array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
swappublic static byte[] swap(byte[] self, int i, int j) Swaps two elements at the specified positions.Example: assert ([1, 3, 2, 4] as byte[]) == ([1, 2, 3, 4] as byte[]).swap(1, 2) - Parameters:
- self- a boolean array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
swappublic static char[] swap(char[] self, int i, int j) Swaps two elements at the specified positions.Example: assert ([1, 3, 2, 4] as char[]) == ([1, 2, 3, 4] as char[]).swap(1, 2) - Parameters:
- self- a boolean array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
swappublic static double[] swap(double[] self, int i, int j) Swaps two elements at the specified positions.Example: assert ([1, 3, 2, 4] as double[]) == ([1, 2, 3, 4] as double[]).swap(1, 2) - Parameters:
- self- a boolean array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
swappublic static float[] swap(float[] self, int i, int j) Swaps two elements at the specified positions.Example: assert ([1, 3, 2, 4] as float[]) == ([1, 2, 3, 4] as float[]).swap(1, 2) - Parameters:
- self- a boolean array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
swappublic static int[] swap(int[] self, int i, int j) Swaps two elements at the specified positions.Example: assert ([1, 3, 2, 4] as int[]) == ([1, 2, 3, 4] as int[]).swap(1, 2) - Parameters:
- self- a boolean array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
swappublic static long[] swap(long[] self, int i, int j) Swaps two elements at the specified positions.Example: assert ([1, 3, 2, 4] as long[]) == ([1, 2, 3, 4] as long[]).swap(1, 2) - Parameters:
- self- a boolean array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
swappublic static short[] swap(short[] self, int i, int j) Swaps two elements at the specified positions.Example: assert ([1, 3, 2, 4] as short[]) == ([1, 2, 3, 4] as short[]).swap(1, 2) - Parameters:
- self- a boolean array
- i- a position
- j- a position
- Returns:
- self
- Since:
- 2.4.0
 
- 
removeAtModifies this list by removing the element at the specified position in this list. Returns the removed element. Essentially an alias forList.remove(int)but with no ambiguity for List<Integer>. Example:def list = [1, 2, 3] list.removeAt(1) assert [1, 3] == list - Parameters:
- self- a List
- index- the index of the element to be removed
- Returns:
- the element previously at the specified position
- Since:
- 2.4.0
 
- 
removeElementModifies this collection by removing a single instance of the specified element from this collection, if it is present. Essentially an alias forCollection.remove(Object)but with no ambiguity for Collection<Integer>. Example:def list = [1, 2, 3, 2] list.removeElement(2) assert [1, 3, 2] == list - Parameters:
- self- a Collection
- o- element to be removed from this collection, if present
- Returns:
- true if an element was removed as a result of this call
- Since:
- 2.4.0
 
- 
getGroovydocGet runtime groovydoc- Parameters:
- holder- the groovydoc hold
- Returns:
- runtime groovydoc
- Since:
- 2.6.0
 
- 
asStringGet the detail information ofThrowableinstance's stack trace- Parameters:
- self- a Throwable instance
- Returns:
- the detail information of stack trace
- Since:
- 2.5.3
 
 
-